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Preface

Welcome to Machine Learning Systems. This book is your gateway to
the fast-paced world of Al systems. It is an extension of the course
(C5249r at Harvard University.

We have created this open-source book as a collaborative effort to
bring together insights from students, professionals, and the broader
community of Al practitioners. Our goal is to develop a comprehensive
guide that explores the intricacies of Al systems and their numerous
applications.

“If you want to go fast, go alone. If you want to go far, go
together.” — African Proverb

This isn't a static textbook; it’s a living, breathing document.
We're making it open-source and continuously updated to meet the
ever-changing needs of this dynamic field. Expect a rich blend of
expert knowledge that guides you through the complex interplay
between cutting-edge algorithms and the foundational principles that
make them work. We're setting the stage for the next big leap in Al
innovation.

Why We Wrote This Book

We're in an age where technology is always evolving. Open collabora-
tion and sharing knowledge are the building blocks of true innovation.
That’s the spirit behind this effort. We go beyond the traditional text-
book model to create a living knowledge hub, so that we can all share
and learn from one another.

The book focuses on Al systems’ principles and case studies, aim-
ing to give you a deep understanding that will help you navigate the
ever-changing landscape of Al systems. By keeping it open, we're not
just making learning accessible but inviting new ideas and ongoing im-
provements. In short, we're building a community where knowledge
is free to grow and light the way forward in global Al technology.


https://sites.google.com/g.harvard.edu/cs249-tinyml-2023
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What You’ll Need to Know

To dive into this book, you don't need to be an Al expert. All you need
is a basic understanding of computer science concepts and a curiosity
to explore how Al systems work. This is where innovation happens,
and a basic grasp of programming and data structures will be your
compass.

Content Transparency Statement

This book is a community-driven project, with content generated col-
laboratively by numerous contributors over time. The content creation
process may have involved various editing tools, including generative
Al technology. As the main author, editor, and curator, Prof. Vijay
Janapa Reddi maintains human oversight and editorial oversight to
make sure the content is accurate and relevant. However, no one is
perfect, so inaccuracies may still exist. We highly value your feedback
and encourage you to provide corrections or suggestions. This collab-
orative approach is crucial for enhancing and maintaining the quality
of the content contained within and making high-quality information
globally accessible.

Want to Help Out?

If you're interested in contributing, you can find the guidelines here.

Get in Touch

Do you have questions or feedback? Feel free to e-mail Prof. Vijay
Janapa Reddi directly, or you are welcome to start a discussion thread
on GitHub.

Contributors

A big thanks to everyone who’s helped make this book what it is!
You can see the full list of individual contributors here and additional
GitHub style details here. Join us as a contributor!


https://github.com/harvard-edge/cs249r_book/blob/dev/contribute.md
mailto:vj@eecs.harvard.edu?subject=%C3%A2%C2%80%C2%9CCS249r%2520MLSys%2520with%2520TinyML%2520Book%2520-%2520%C3%A2%C2%80%C2%9D
mailto:vj@eecs.harvard.edu?subject=%C3%A2%C2%80%C2%9CCS249r%2520MLSys%2520with%2520TinyML%2520Book%2520-%2520%C3%A2%C2%80%C2%9D
https://github.com/harvard-edge/cs249r_book/discussions
contents/core/acknowledgements/acknowledgements.qmd
https://github.com/harvard-edge/cs249r_book/graphs/contributors

PREFACE iii

Copyright

This book is open-source and developed collaboratively through
GitHub. Unless otherwise stated, this work is licensed under the
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Inter-
national (CC BY-NC-5A 4.0 CC BY-SA 4.0). You can find the full text
of the license here.

Contributors to this project have dedicated their contributions to
the public domain or under the same open license as the original
project. While the contributions are collaborative, each contributor
retains copyright in their respective contributions.

For details on authorship, contributions, and how to contribute,
please see the project repository on GitHub.

All trademarks and registered trademarks mentioned in this book
are the property of their respective owners.

The information provided in this book is believed to be accurate and
reliable. However, the authors, editors, and publishers cannot be held
liable for any damages caused or alleged to be caused either directly or
indirectly by the information contained in this book.


https://creativecommons.org/licenses/by-nc-sa/4.0
https://github.com/harvard-edge/cs249r_book
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About the Book

Overview

Welcome to this collaborative textbook, developed as part of the
(C5249r Machine Learning Systems class at Harvard University. Our
goal is to provide a comprehensive resource for educators and stu-
dents seeking to understand machine learning systems. This book is
continually updated to incorporate the latest insights and effective
teaching strategies.

What’s Inside the Book

We explore the technical foundations of machine learning systems,
the challenges of building and deploying these systems across the
computing continuum, and the vast array of applications they enable.
A unique aspect of this book is its function as a conduit to seminal
scholarly works and academic research papers, aimed at enriching the
reader’s understanding and encouraging deeper exploration of the
subject. This approach seeks to bridge the gap between pedagogical
materials and cutting-edge research trends, offering a comprehensive
guide that is in step with the evolving field of applied machine
learning.

To improve the learning experience, we have included a variety of
supplementary materials. Throughout the book, you will find slides
that summarize key concepts, videos that provide in-depth explana-
tions and demonstrations, exercises that reinforce your understanding,
and labs that offer hands-on experience with the tools and techniques
discussed. These additional resources are designed to cater to different
learning styles and help you gain a deeper, more practical understand-
ing of the subject matter.
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Topics Explored

This textbook offers a comprehensive exploration of various aspects
of machine learning systems, covering the entire end-to-end workflow.
Starting with foundational concepts, it progresses through essential
areas such as data engineering, Al frameworks, and model training.

To enhance the learning experience, we included a diverse array
of supplementary materials. These resources consist of slides that
summarize key concepts, videos providing detailed explanations
and demonstrations, exercises designed to reinforce understanding,
and labs that offer hands-on experience with the discussed tools and
techniques.

Readers will gain insights into optimizing models for efficiency, de-
ploying Al across different hardware platforms, and benchmarking
performance. The book also delves into advanced topics, including
security, privacy, responsible and sustainable Al, robust Al, and gener-
ative Al. Additionally, it examines the social impact of Al, concluding
with an emphasis on the positive contributions Al can make to society.

Key Learning Outcomes

Readers will acquire skills in training and deploying deep neural
network models on various platforms, along with understanding
the broader challenges involved in their design, development, and
deployment. Specifically, after completing this book, learners will be
able to:

@ Tip

1. Explain core concepts and their relevance to Al systems.

2. Describe the fundamental components and architecture of
Al systems.

3. Compare and contrast various hardware platforms for Al
deployment, selecting appropriate options for specific use
cases.

4. Design and implement training processes for Al models
across different systems.

5. Apply optimization techniques to improve Al model per-
formance and efficiency.
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6. Analyze real-world Al applications and their implementa-

7. Evaluate current challenges in Al systems and predict fu-

8. Develop a complete machine learning-enabled project,

9. Troubleshoot common issues in Al model training and de-

10. Critically assess the ethical implications and societal im-

tion strategies.

ture trends in the field.

from conception to deployment.

ployment.

pacts of Al systems.

Prerequisites for Readers

Basic Programming Skills: We recommend that you have some
prior programming experience, ideally in Python. A grasp of
variables, data types, and control structures will make it easier
to engage with the book.

Some Machine Learning Knowledge: While not mandatory, a
basic understanding of machine learning concepts will help you
absorb the material more readily. If you're new to the field, the
book provides enough background information to get you up to
speed.

Basic Systems Knowledge: A basic level of systems knowledge
at an undergraduate junior or senior level is recommended. Un-
derstanding system architecture, operating systems, and basic
networking will be beneficial.

Python Programming (Optional): If you're familiar with Python,
you'll find it easier to engage with the coding sections of the book.
Knowing libraries like NumPy, scikit-learn, and TensorFlow will
be particularly helpful.

Willingness to Learn: The book is designed to be accessible to a
broad audience, with varying levels of technical expertise. A will-
ingness to challenge yourself and engage in practical exercises
will help you get the most out of it.

Resource Availability: For the hands-on aspects, you'll need
a computer with Python and the relevant libraries installed.
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Optional access to development boards or specific hardware
will also be beneficial for experimenting with machine learning
model deployment.

By meeting these prerequisites, you'll be well-positioned to deepen
your understanding of machine learning systems, engage in coding ex-
ercises, and even implement practical applications on various devices.

Who Should Read This

This book is designed for individuals at different stages of their jour-
ney with machine learning systems, from beginners to those more ad-
vanced in the field. It introduces fundamental concepts and progresses
to complex topics relevant to the machine learning community and ex-
pansive research areas. The key audiences for this book include:

¢ Students in Computer Science and Electrical Engineering:
Senior and graduate students will find this book particularly
valuable. It introduces the techniques essential for designing
and building ML systems, focusing on foundational knowledge
rather than exhaustive detail—often the focus of classroom
instruction. This book will provide the necessary background
and context, enabling instructors to explore advanced topics
more deeply. An essential feature is its end-to-end perspective,
which is often overlooked in traditional curricula.

¢ Systems Engineers: This book serves as a guide for engineers
seeking to understand the complexities of intelligent systems and
applications, particularly involving ML. It encompasses the con-
ceptual frameworks and practical components that comprise an
ML system, extending beyond the specific areas you might en-
counter in your professional role.

¢ Researchers and Academics: For researchers, this book ad-
dresses the distinct challenges of executing machine learning
algorithms across diverse platforms. As efficiency gains impor-
tance, a robust understanding of systems, beyond algorithms
alone, is crucial for developing more efficient models. The book
references seminal papers, directing researchers to works that
have influenced the field and establishing connections between
various areas with significant implications for their research.
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How to Navigate This Book

To get the most out of this book, we recommend a structured learning
approach that leverages the various resources provided. Each chapter
includes slides, videos, exercises, and labs to cater to different learning
styles and reinforce your understanding.

1. Fundamentals (Chapters 1-3): Start by building a strong founda-
tion with the initial chapters, which provide an introduction to
Al and cover core topics like Al systems and deep learning.

2. Workflow (Chapters 4-6): With that foundation, move on to the
chapters focused on practical aspects of the Al model building
process like workflows, data engineering, and frameworks.

3. Training (Chapters 7-10): These chapters offer insights into ef-
fectively training Al models, including techniques for efficiency,
optimizations, and acceleration.

4. Deployment (Chapters 11-13): Learn about deploying Al on de-
vices and monitoring the operationalization through methods
like benchmarking, on-device learning, and MLOps.

5. Advanced Topics (Chapters 14-18): Critically examine topics
like security, privacy, ethics, sustainability, robustness, and
generative Al

6. Social Impact (Chapter 19): Explore the positive applications
and potential of Al for societal good.

7. Conclusion (Chapter 20): Reflect on the key takeaways and fu-
ture directions in Al systems.

While the book is designed for progressive learning, we encourage
an interconnected learning approach that allows you to navigate chap-
ters based on your interests and needs. Throughout the book, you'll
find case studies and hands-on exercises that help you relate theory to
real-world applications. We also recommend participating in forums
and groups to engage in discussions, debate concepts, and share in-
sights with fellow learners. Regularly revisiting chapters can help re-
inforce your learning and offer new perspectives on the concepts cov-
ered. By adopting this structured yet flexible approach and actively
engaging with the content and the community, you'll embark on a ful-
filling and enriching learning experience that maximizes your under-
standing.


https://github.com/harvard-edge/cs249r_book/discussions
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Chapter-by-Chapter Insights

Here’s a closer look at what each chapter covers. We have structured
the book into six main sections: Fundamentals, Workflow, Training,
Deployment, Advanced Topics, and Impact. These sections closely
reflect the major components of a typical machine learning pipeline,
from understanding the basic concepts to deploying and maintaining
Al systems in real-world applications. By organizing the content in
this manner, we aim to provide a logical progression that mirrors the
actual process of developing and implementing Al systems.

Fundamentals

In the Fundamentals section, we lay the groundwork for understand-
ing Al This is far from being a thorough deep dive into the algorithms,
but we aim to introduce key concepts, provide an overview of machine
learning systems, and dive into the principles and algorithms of deep
learning that power Al applications in their associated systems. This
section equips you with the essential knowledge needed to grasp the
subsequent chapters.

1. Introduction: This chapter sets the stage, providing an overview
of Al and laying the groundwork for the chapters that follow.

2. ML Systems: We introduce the basics of machine learning sys-
tems, the platforms where Al algorithms are widely applied.

3. Deep Learning Primer: This chapter offers a brief introduction
to the algorithms and principles that underpin Al applications
in ML systems.

Workflow

The Workflow section guides you through the practical aspects of
building Al models. We break down the Al workflow, discuss data
engineering best practices, and review popular Al frameworks. By
the end of this section, you’ll have a clear understanding of the
steps involved in developing proficient Al applications and the tools
available to streamline the process.

4. AI Workflow: This chapter breaks down the machine learning
workflow, offering insights into the steps leading to proficient Al
applications.

5. Data Engineering: We focus on the importance of data in Al sys-
tems, discussing how to effectively manage and organize data.


../introduction/introduction.qmd
../ml_systems/ml_systems.qmd
../dl_primer/dl_primer.qmd
../workflow/workflow.qmd
../data_engineering/data_engineering.qmd
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6. Al Frameworks: This chapter reviews different frameworks for
developing machine learning models, guiding you in choosing
the most suitable one for your projects.

Training

In the Training section, we explore techniques for training efficient
and reliable AI models. We cover strategies for achieving efficiency,
model optimizations, and the role of specialized hardware in Al accel-
eration. This section empowers you with the knowledge to develop
high-performing models that can be seamlessly integrated into Al sys-
tems.

7. Al Training: This chapter explores model training, exploring
techniques for developing efficient and reliable models.

8. Efficient AI: Here, we discuss strategies for achieving efficiency
in Al applications, from computational resource optimization to
performance enhancement.

9. Model Optimizations: We explore various avenues for optimiz-
ing Al models for seamless integration into Al systems.
10. AI Acceleration: We discuss the role of specialized hardware in
enhancing the performance of Al systems.

Deployment

The Deployment section focuses on the challenges and solutions for de-
ploying Al models. We discuss benchmarking methods to evaluate Al
system performance, techniques for on-device learning to improve effi-
ciency and privacy, and the processes involved in ML operations. This
section equips you with the skills to effectively deploy and maintain
Al functionalities in Al systems.

11. Benchmarking AI: This chapter focuses on how to evaluate Al
systems through systematic benchmarking methods.

12. On-Device Learning: We explore techniques for localized learn-
ing, which enhances both efficiency and privacy.

13. ML Operations: This chapter looks at the processes involved
in the seamless integration, monitoring, and maintenance of Al
functionalities.

Advanced Topics

In the Advanced Topics section, We will study the critical issues sur-
rounding Al We address privacy and security concerns, explore the


../frameworks/frameworks.qmd
../training/training.qmd
../efficient_ai/efficient_ai.qmd
../optimizations/optimizations.qmd
../hw_acceleration/hw_acceleration.qmd
../benchmarking/benchmarking.qmd
../ondevice_learning/ondevice_learning.qmd
../ops/ops.qmd
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ethical principles of responsible Al, discuss strategies for sustainable
Al development, examine techniques for building robust Al models,
and introduce the exciting field of generative Al This section broad-
ens your understanding of the complex landscape of Al and prepares
you to navigate its challenges.

14. Security & Privacy: As Al becomes more ubiquitous, this chap-
ter addresses the crucial aspects of privacy and security in Al
systems.

15. Responsible AI: We discuss the ethical principles guiding the
responsible use of Al, focusing on fairness, accountability, and
transparency.

16. Sustainable AI: This chapter explores practices and strategies for
sustainable Al, ensuring long-term viability and reduced envi-
ronmental impact.

17. Robust AI: We discuss techniques for developing reliable and
robust AI models that can perform consistently across various
conditions.

18. Generative AI: This chapter explores the algorithms and tech-
niques behind generative Al, opening avenues for innovation
and creativity.

Social Impact

The Impact section highlights the transformative potential of Al in
various domains. We showcase real-world applications of TinyML
in healthcare, agriculture, conservation, and other areas where Al is
making a positive difference. This section inspires you to leverage the
power of Al for societal good and to contribute to the development of
impactful solutions.

19. Al for Good: We highlight positive applications of TinyML in
areas like healthcare, agriculture, and conservation.

Closing

In the Closing section, we reflect on the key learnings from the book
and look ahead to the future of AL. We synthesize the concepts covered,
discuss emerging trends, and provide guidance on continuing your
learning journey in this rapidly evolving field. This section leaves you
with a comprehensive understanding of Al and the excitement to apply
your knowledge in innovative ways.

20. Conclusion: The book concludes with a reflection on the key
learnings and future directions in the field of AL


../privacy_security/privacy_security.qmd
../responsible_ai/responsible_ai.qmd
../sustainable_ai/sustainable_ai.qmd
../robust_ai/robust_ai.qmd
../generative_ai/generative_ai.qmd
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Tailored Learning

We understand that readers have diverse interests; some may wish to
grasp the fundamentals, while others are eager to delve into advanced
topics like hardware acceleration or Al ethics. To help you navigate the
book more effectively, we've created a persona-based reading guide
tailored to your specific interests and goals. This guide assists you in
identifying the reader persona that best matches your interests. Each
persona represents a distinct reader profile with specific objectives. By
selecting the persona that resonates with you, you can focus on the
chapters and sections most relevant to your needs.

Persona Description Chapters Focus

The You are new to 1-3,8,9,10, Understand the

TinyML the field of 12 fundamentals, gain

New- TinyML and insights into efficient and

bie eager to learn the optimized ML, and learn
basics. about on-device learning.

The You have some 1-3,8,9,10, Build a strong

EdgeMLTinyML 12,13 foundation, delve into

En- knowledge and the intricacies of efficient

thusi- are interested in ML, and explore the

ast exploring the operational aspects of
broader world of embedded systems.
EdgeML.

The You are 1-3,5,8-10, Start with the basics,

Com- fascinated by 12,13,17, explore data engineering,

puter computer vision 20 and study methods for

Vi- and its optimizing ML models.

sion-  applications in Learn about robustness

ary TinyML and and the future of ML
EdgeML. systems.

The You are 1-5,8-13 Gain a comprehensive

Data  passionate about understanding of data’s

Mae- data and its role in ML systems,

stro crucial role in ML explore the ML workflow,
systems. and dive into model

optimization and
deployment

considerations.
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Persona Description Chapters Focus
The You are excited 1-3,6,8-10, Build a solid foundation
Hard- about the 12,14,17, in ML systems and
ware  hardware aspects 20 frameworks, explore
Hero  of ML systems challenges of optimizing
and how they models for efficiency,
impact model hardware-software
performance. co-design, and security
aspects.
The You are an 1-3, 8-10, Begin with the
Sus- advocate for 12,15, 16, fundamentals of ML
tain-  sustainability and 20 systems and TinyML,
abil-  want to learn explore model
ity how to develop optimization techniques,
Cham- eco-friendly Al and learn about
pion  systems. responsible and
sustainable Al practices.
The You are 1-3,5,7,12, Gain insights into the
Al concerned about  14-16, 19, ethical considerations
Ethi-  the ethical 20 surrounding Al,
cist implications of including fairness,
Al and want to privacy, sustainability,
ensure and responsible
responsible development practices.
development and
deployment.
The You are a The entire ~ Understand the
Full-  seasoned ML book end-to-end process of
Stack  expert and want building and deploying
ML to deepen your ML systems, from data
Engi- understanding of engineering and model
neer  the entire ML optimization to hardware

system stack.

acceleration and ethical
considerations.

Join the Community

Learning in the fast-paced world of Al is a collaborative journey.
We set out to nurture a vibrant community of learners, innovators,

and contributors.

As you explore the concepts and engage with

the exercises, we encourage you to share your insights and experi-
ences. Whether it’s a novel approach, an interesting application, or a
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thought-provoking question, your contributions can enrich the learn-
ing ecosystem. Engage in discussions, offer and seek guidance, and
collaborate on projects to foster a culture of mutual growth and learn-
ing. By sharing knowledge, you play an important role in fostering a
globally connected, informed, and empowered community.






Chapter 1

Introduction

1.1 Why Machine Learning Systems Matter

Al is everywhere. Consider your morning routine: You wake up to an
Al-powered smart alarm that learned your sleep patterns. Your phone
suggests your route to work, having learned from traffic patterns. Dur-
ing your commute, your music app automatically creates a playlist it
thinks you'll enjoy. At work, your email client filters spam and pri-
oritizes important messages. Throughout the day, your smartwatch
monitors your activity, suggesting when to move or exercise. In the
evening, your streaming service recommends shows you might like,
while your smart home devices adjust lighting and temperature based

Figure 1.1: DALL-E 3 Prompt:
A detailed, rectangular, flat 2D
illustration depicting a roadmap
of a book’s chapters on machine
learning systems, set on a crisp,
clean white background. The im-
age features a winding road trav-
eling through various symbolic
landmarks. Each landmark rep-
resents a chapter topic: Introduc-
tion, ML Systems, Deep Learning,
Al Workflow, Data Engineering,
Al Frameworks, Al Training, Ef-
ficient AI, Model Optimizations,
Al Acceleration, Benchmarking
Al, On-Device Learning, Embed-
ded AIOps, Security & Privacy,
Responsible Al, Sustainable Al,
Al for Good, Robust Al, Genera-
tive AL The style is clean, modern,
and flat, suitable for a technical
book, with each landmark clearly
labeled with its chapter title.



Figure 1.2: Ubiquitous com-
puting as envisioned by Mark
Weiser.
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on your learned preferences.

But these everyday conveniences are just the beginning. Al is trans-
forming our world in extraordinary ways. Today, Al systems detect
early-stage cancers with unprecedented accuracy, predict and track ex-
treme weather events to save lives, and accelerate drug discovery by
simulating millions of molecular interactions. Autonomous vehicles
navigate complex city streets while processing real-time sensor data
from dozens of sources. Language models engage in sophisticated con-
versations, translate between hundreds of languages, and help scien-
tists analyze vast research databases. In scientific laboratories, Al sys-
tems are making breakthrough discoveries - from predicting protein
structures that unlock new medical treatments to identifying promis-
ing materials for next-generation solar cells and batteries. Even in cre-
ative fields, Al collaborates with artists and musicians to explore new
forms of expression, pushing the boundaries of human creativity.

This isn't science fiction—it’s the reality of how artificial intelligence,
specifically machine learning systems, has become woven into the fab-
ric of our daily lives. In the early 1990s, Mark Weiser, a pioneering
computer scientist, introduced the world to a revolutionary concept
that would forever change how we interact with technology. This vi-
sion was succinctly captured in his seminal paper, “The Computer for
the 21st Century” (see Figure 1.2). Weiser envisioned a future where
computing would be seamlessly integrated into our environments, be-
coming an invisible, integral part of daily life.

The Computer
for the 21st Century

—

by Mars wranar

He termed this concept “ubiquitous computing,” promising a world


https://en.wikipedia.org/wiki/Mark_Weiser
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where technology would serve us without demanding our constant
attention or interaction. Today, we find ourselves living in Weiser’s
envisioned future, largely enabled by machine learning systems. The
true essence of his vision—creating an intelligent environment that
can anticipate our needs and act on our behalf—has become reality
through the development and deployment of ML systems that span
entire ecosystems, from powerful cloud data centers to edge devices
to the tiniest IoT sensors.

Yet most of us rarely think about the complex systems that make
this possible. Behind each of these seemingly simple interactions lies
a sophisticated infrastructure of data, algorithms, and computing re-
sources working together. Understanding how these systems work—
their capabilities, limitations, and requirements—has become increas-
ingly critical as they become more integrated into our world.

To appreciate the magnitude of this transformation and the complex-
ity of modern machine learning systems, we need to understand how
we got here. The journey from early artificial intelligence to today’s
ubiquitous ML systems is a story of not just technological evolution,
but of changing perspectives on what’s possible and what’s necessary
to make Al practical and reliable.

1.2 The Evolution of Al

The evolution of Al, depicted in the timeline shown in Figure 1.3,
highlights key milestones such as the development of the perceptron’
in 1957 by Frank Rosenblatt, a foundational element for modern
neural networks. Imagine walking into a computer lab in 1965. You'd
find room-sized mainframes running programs that could prove
basic mathematical theorems or play simple games like tic-tac-toe.
These early artificial intelligence systems, while groundbreaking for
their time, were a far cry from today’s machine learning systems that
can detect cancer in medical images or understand human speech.
The timeline shows the progression from early innovations like the
ELIZA chatbot in 1966, to significant breakthroughs such as IBM'’s
Deep Blue defeating chess champion Garry Kasparov in 1997. More
recent advancements include the introduction of OpenAl’s GPT-3 in
2020 and GPT-4 in 2023, demonstrating the dramatic evolution and
increasing complexity of Al systems over the decades.

Let’s explore how we got here.

1 The first artificial neu-

ral network—a simple model
that could learn to classify vi-
sual patterns, similar to a sin-
gle neuron making a yes/no
decision based on its inputs.



Figure 1.3: Milestones in Al

from 1950 to 2020.
IEEE Spectrum

Source:
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1.2.1 Symbolic AI (1956-1974)

The story of machine learning begins at the historic Dartmouth Confer-
ence in 1956, where pioneers like John McCarthy, Marvin Minsky, and
Claude Shannon first coined the term “artificial intelligence.” Their ap-
proach was based on a compelling idea: intelligence could be reduced
to symbol manipulation. Consider Daniel Bobrow’s STUDENT system
from 1964, one of the first Al programs that could solve algebra word
problems:

1 Example: STUDENT (1964)

Problem: "If the number of customers Tom gets is twice the
square of 20% of the number of advertisements he runs, and
the number of advertisements is 45, what is the number of
customers Tom gets?"

STUDENT would:

Parse the English text

Convert it to algebraic equations
Solve the equation: n = 2(0.2 x 45)?
Provide the answer: 162 customers

W N e

Early AI like STUDENT suffered from a fundamental limita-
tion: they could only handle inputs that exactly matched their
pre-programmed patterns and rules. Imagine a language trans-
lator that only works when sentences follow perfect grammatical
structure—even slight variations like changing word order, using
synonyms, or natural speech patterns would cause the STUDENT to
fail. This “brittleness” meant that while these solutions could appear
intelligent when handling very specific cases they were designed for,
they would break down completely when faced with even minor
variations or real-world complexity. This limitation wasn’t just a tech-
nical inconvenience—it revealed a deeper problem with rule-based
approaches to Al: they couldn’t genuinely understand or generalize
from their programming, they could only match and manipulate
patterns exactly as specified.

1.2.2 Expert Systems(1970s-1980s)

By the mid-1970s, researchers realized that general Al was too ambi-
tious. Instead, they focused on capturing human expert knowledge in



2 The observation made

by Intel co-founder Gordon
Moore in 1965 that the num-
ber of transistors on a mi-
crochip doubles approximately
every two years, while the
cost halves. This exponential
growth in computing power
has been a key driver of ad-
vances in machine learning,
though the pace has begun to
slow in recent years.
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specific domains. MYCIN, developed at Stanford, was one of the first
large-scale expert systems designed to diagnose blood infections:

1 Example: MYCIN (1976)

Rule Example from MYCIN:

There is suggestive evidence (0.7) that infection is

While MYCIN represented a major advance in medical Al with
its 600 expert rules for diagnosing blood infections, it revealed fun-
damental challenges that still plague ML today. Getting domain
knowledge from human experts and converting it into precise rules
proved incredibly time-consuming and difficult—doctors often
couldn’t explain exactly how they made decisions. MYCIN struggled
with uncertain or incomplete information, unlike human doctors who
could make educated guesses. Perhaps most importantly, maintaining
and updating the rule base became exponentially more complex as
MYCIN grew—adding new rules often conflicted with existing ones,
and medical knowledge itself kept evolving. These same challenges of
knowledge capture, uncertainty handling, and maintenance remain
central concerns in modern machine learning, even though we now
use different technical approaches to address them.

1.2.3 Statistical Learning: A Paradigm Shift (1990s)

The 1990s marked a radical transformation in artificial intelligence
as the field moved away from hand-coded rules toward statistical
learning approaches. This wasn't a simple choice—it was driven by
three converging factors that made statistical methods both possible
and powerful. The digital revolution meant massive amounts of
data were suddenly available to train the algorithms. Moore’s Law?
delivered the computational power needed to process this data
effectively. And researchers developed new algorithms like Support
Vector Machines and improved neural networks that could actually
learn patterns from this data rather than following pre-programmed
rules. This combination fundamentally changed how we built Al:
instead of trying to encode human knowledge directly, we could now
let machines discover patterns automatically from examples, leading

IF

The infection is primary-bacteremia

The site of the culture is one of the sterile sites

The suspected portal of entry is the gastrointestinal tract
THEN

bacteroid



CHAPTER 1. INTRODUCTION 7

to more robust and adaptable Al
Consider how email spam filtering evolved:

1 Example: Early Spam Detection Systems

Rule-based (1980s):
IF contains("viagra") OR contains("winner") THEN spam

Statistical (1990s):
P(spam|word) = (frequency in spam emails) / (total frequency)
Combined using Naive Bayes:

P(spam|email) P(spam) x P(word|spam)

The move to statistical approaches fundamentally changed how
we think about building Al by introducing three core concepts that
remain important today. First, the quality and quantity of training
data became as important as the algorithms themselves—AI could
only learn patterns that were present in its training examples. Second,
we needed rigorous ways to evaluate how well Al actually performed,
leading to metrics that could measure success and compare different
approaches. Third, we discovered an inherent tension between preci-
sion (being right when we make a prediction) and recall (catching all
the cases we should find), forcing designers to make explicit trade-offs
based on their application’s needs. For example, a spam filter might
tolerate some spam to avoid blocking important emails, while medical
diagnosis might need to catch every potential case even if it means
more false alarms.

Table 1.1 encapsulates the evolutionary journey of Al approaches we
have discussed so far, highlighting the key strengths and capabilities
that emerged with each new paradigm. As we move from left to right
across the table, we can observe several important trends. We will talk
about shallow and deep learning next, but it is useful to understand
the trade-offs between the approaches we have covered so far.

Table 1.1: Evolution of Al - Key Positive Aspects

Shallow /
Symbolic Expert Statistical Deep
Aspect Al Systems Learning Learning
Key Logical Domain Versatility ~ Pattern

Strength  reasoning  expertise recognition
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Shallow /
Symbolic Expert Statistical Deep
Aspect Al Systems Learning Learning
Best Use ~ Well- Specific Various Complex,
Case defined, domain structured  unstructured
rule-based  problems data data
problems problems problems
Data Minimal Domain Moderate Large-scale
Han- data knowledge- data data
dling needed based required processing
AdaptabilityFixed rules  Domain- Adaptable  Highly
specific to various  adaptable to
adaptabil-  domains diverse tasks
ity
Problem  Simple, Complicated, Complex, Highly
Com- logic-based domain- structured  complex,
plexity specific unstructured

The table serves as a bridge between the early approaches we’ve dis-
cussed and the more recent developments in shallow and deep learn-
ing that we’ll explore next. It sets the stage for understanding why
certain approaches gained prominence in different eras and how each
new paradigm built upon and addressed the limitations of its predeces-
sors. Moreover, it illustrates how the strengths of earlier approaches
continue to influence and enhance modern Al techniques, particularly
in the era of foundation models.

1.2.4 Shallow Learning (2000s)

The 2000s marked a fascinating period in machine learning history that
we now call the “shallow learning” era. To understand why it’s “shal-
low,” imagine building a house: deep learning (which came later) is
like having multiple construction crews working at different levels si-
multaneously, each crew learning from the work of crews below them.
In contrast, shallow learning typically had just one or two levels of pro-
cessing - like having just a foundation crew and a framing crew.
During this time, several powerful algorithms dominated the ma-
chine learning landscape. Each brought unique strengths to differ-
ent problems: Decision trees provided interpretable results by making
choices much like a flowchart. K-nearest neighbors made predictions
by finding similar examples in past data, like asking your most expe-
rienced neighbors for advice. Linear and logistic regression offered
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straightforward, interpretable models that worked well for many real-
world problems. Support Vector Machines (SVMs) excelled at find-
ing complex boundaries between categories using the “kernel trick” -
imagine being able to untangle a bowl of spaghetti into straight lines by
lifting it into a higher dimension. These algorithms formed the foun-
dation of practical machine learning because: Consider a typical com-
puter vision solution from 2005:

1 Example: Traditional Computer Vision Pipeline

1. Manual Feature Extraction
- SIFT (Scale-Invariant Feature Transform)
- HOG (Histogram of Oriented Gradients)
- Gabor filters

2. Feature Selection/Engineering

. "Shallow" Learning Model (e.g., SVM)

4. Post-processing

w

What made this era distinct was its hybrid approach: human-
engineered features combined with statistical learning. They had
strong mathematical foundations (researchers could prove why they
worked). They performed well even with limited data. They were
computationally efficient. They produced reliable, reproducible
results.

Take the example of face detection, where the Viola-Jones algorithm
(2001) achieved real-time performance using simple rectangular fea-
tures and a cascade of classifiers. This algorithm powered digital cam-
era face detection for nearly a decade.

1.2.5 Deep Learning (2012-Present)

While Support Vector Machines excelled at finding complex bound-
aries between categories using mathematical transformations, deep
learning took a radically different approach inspired by the human
brain’s architecture. Deep learning is built from layers of artificial
neurons, where each layer learns to transform its input data into
increasingly abstract representations. Imagine processing an image of
a cat: the first layer might learn to detect simple edges and contrasts,
the next layer combines these into basic shapes and textures, another
layer might recognize whiskers and pointy ears, and the final layers
assemble these features into the concept of “cat.” Unlike shallow learn-
ing methods that required humans to carefully engineer features, deep
learning networks can automatically discover useful features directly



Figure 1.4: Deep neural net-
work architecture for Alexnet.
Source: Krizhevsky, Sutskever,
and Hinton (2012)

3 A breakthrough deep neu-

ral network from 2012 that won
the ImageNet competition by a
large margin and helped spark
the deep learning revolution.

4 Similar to how the brain’s

neural  connections  grow
stronger as you learn a new
skill, having more parameters
generally means that the
model can learn more complex

patterns.
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from raw data. This ability to learn hierarchical representations—from
simple to complex, concrete to abstract—is what makes deep learning
“deep,” and it turned out to be a remarkably powerful approach for
handling complex, real-world data like images, speech, and text.

In 2012, a deep neural network called AlexNet, shown in Figure 1.4,
achieved a breakthrough in the ImageNet competition that would
transform the field of machine learning. The challenge was formidable:
correctly classify 1.2 million high-resolution images into 1,000 dif-
ferent categories. While previous approaches struggled with error
rates above 25%, AlexNet achieved a 15.3% error rate, dramatically
outperforming all existing methods.
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The success of AlexNet wasn’t just a technical achievement—it was
a watershed moment that demonstrated the practical viability of deep
learning. It showed that with sufficient data, computational power,
and architectural innovations, neural networks could outperform
hand-engineered features and shallow learning methods that had
dominated the field for decades. This single result triggered an
explosion of research and applications in deep learning that continues
to this day.

From this foundation, deep learning entered an era of unprece-
dented scale. By the late 2010s, companies like Google, Facebook, and
OpenAl were training neural networks thousands of times larger than
AlexNet® . These massive models, often called “foundation models,”
took deep learning to new heights. GPT-3, released in 2020, contained
175 billion parameters* —imagine a student that could read through
all of Wikipedia multiple times and learn patterns from every article.
These models showed remarkable abilities: writing human-like text,
engaging in conversation, generating images from descriptions, and
even writing computer code. The key insight was simple but powerful:
as we made neural networks bigger and fed them more data, they
became capable of solving increasingly complex tasks. However,
this scale brought unprecedented systems challenges: how do you
efficiently train models that require thousands of GPUs working in
paralle]? How do you store and serve models that are hundreds of


https://www.image-net.org/challenges/LSVRC/
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gigabytes in size? How do you handle the massive datasets needed
for training?

The deep learning revolution of 2012 didn’t emerge from nowhere—
it was built on neural network research dating back to the 1950s. The
story begins with Frank Rosenblatt’s Perceptron in 1957, which cap-
tured the imagination of researchers by showing how a simple arti-
ficial neuron could learn to classify patterns. While it could only han-
dle linearly separable problems—a limitation dramatically highlighted
by Minsky and Papert’s 1969 book “Perceptrons”—it introduced the
fundamental concept of trainable neural networks. The 1980s brought
more important breakthroughs: Rumelhart, Hinton, and Williams in-
troduced backpropagation in 1986, providing a systematic way to train
multi-layer networks, while Yann LeCun demonstrated its practical ap-
plication in recognizing handwritten digits using convolutional neu-
ral networks (CNNs)° .

! Important 18: Convolutional Network Demo from 1989

https:/ /www.youtube.com/watch?v=FwFduRA_L6Qé&ab_
channel=YannLeCun

Yet these networks largely languished through the 1990s and 2000s,
not because the ideas were wrong, but because they were ahead of their
time—the field lacked three important ingredients: sufficient data to
train complex networks, enough computational power to process this
data, and the technical innovations needed to train very deep networks
effectively.

The field had to wait for the convergence of big data, better com-
puting hardware, and algorithmic breakthroughs before deep learn-
ing’s potential could be unlocked. This long gestation period helps
explain why the 2012 ImageNet moment was less a sudden revolution
and more the culmination of decades of accumulated research finally
finding its moment. As we’ll explore in the following sections, this
evolution has led to two significant developments in the field. First, it
has given rise to define the field of machine learning systems engineer-
ing, a discipline that teaches how to bridge the gap between theoretical
advancements and practical implementation. Second, it has necessi-
tated a more comprehensive definition of machine learning systems,
one that encompasses not just algorithms, but also data and comput-
ing infrastructure. Today’s challenges of scale echo many of the same
fundamental questions about computation, data, and learning meth-
ods that researchers have grappled with since the field’s inception, but
now within a more complex and interconnected framework.

5 A type of neural net-

work specially designed for
processing images, inspired by
how the human visual system
works.  The “convolutional”
part refers to how it scans im-
ages in small chunks, similar to
how our eyes focus on different
parts of a scene.


https://www.youtube.com/watch?v=FwFduRA_L6Q&ab_channel=YannLeCun
https://www.youtube.com/watch?v=FwFduRA_L6Q&ab_channel=YannLeCun
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1.3 The Rise of ML Systems Engineering

The story we’ve traced—from the early days of the Perceptron through
the deep learning revolution—has largely been one of algorithmic
breakthroughs. Each era brought new mathematical insights and
modeling approaches that pushed the boundaries of what Al could
achieve. But something important changed over the past decade: the
success of Al systems became increasingly dependent not just on
algorithmic innovations, but on sophisticated engineering.

This shift mirrors the evolution of computer science and engineer-
ing in the late 1960s and early 1970s. During that period, as comput-
ing systems grew more complex, a new discipline emerged: Computer
Engineering. This field bridged the gap between Electrical Engineer-
ing’s hardware expertise and Computer Science’s focus on algorithms
and software. Computer Engineering arose because the challenges of
designing and building complex computing systems required an inte-
grated approach that neither discipline could fully address on its own.

Today, we're witnessing a similar transition in the field of AL. While
Computer Science continues to push the boundaries of ML algorithms
and Electrical Engineering advances specialized Al hardware, neither
discipline fully addresses the engineering principles needed to deploy,
optimize, and sustain ML systems at scale. This gap highlights the
need for a new discipline: Machine Learning Systems Engineering.

There is no explicit definition of what this field is as such today, but
it can be broadly defined as such:

@ Definition of Machine Learning Systems Engineering

Machine Learning Systems Engineering (MLSysEng) is the dis-
cipline of designing, implementing, and operating artificially
intelligent systems across computing scales—from resource-
constrained embedded devices to warehouse-scale computers.
This field integrates principles from engineering disciplines
spanning hardware to software to create systems that are reliable,
efficient, and optimized for their deployment context. It encom-
passes the complete lifecycle of Al applications: from require-
ments engineering and data collection through model develop-
ment, system integration, deployment, monitoring, and mainte-
nance. The field emphasizes engineering principles of systematic
design, resource constraints, performance requirements, and op-
erational reliability.

Let’s consider space exploration. While astronauts venture into new
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frontiers and explore the vast unknowns of the universe, their discov-
eries are only possible because of the complex engineering systems
supporting them—the rockets that lift them into space, the life sup-
port systems that keep them alive, and the communication networks
that keep them connected to Earth. Similarly, while Al researchers
push the boundaries of what's possible with learning algorithms, their
breakthroughs only become practical reality through careful systems
engineering. Modern Al systems need robust infrastructure to collect
and manage data, powerful computing systems to train models, and
reliable deployment platforms to serve millions of users.

This emergence of machine learning systems engineering as a im-
portant discipline reflects a broader reality: turning Al algorithms into
real-world systems requires bridging the gap between theoretical pos-
sibilities and practical implementation. It’s not enough to have a bril-
liant algorithm if you can't efficiently collect and process the data it
needs, distribute its computation across hundreds of machines, serve
it reliably to millions of users, or monitor its performance in produc-
tion.

Understanding this interplay between algorithms and engineer-
ing has become fundamental for modern Al practitioners. While
researchers continue to push the boundaries of what’s algorithmically
possible, engineers are tackling the complex challenge of making
these algorithms work reliably and efficiently in the real world. This
brings us to a fundamental question: what exactly is a machine learn-
ing system, and what makes it different from traditional software
systems?

1.4 Definition of a ML System

There’s no universally accepted, clear-cut textbook definition of a ma-
chine learning system. This ambiguity stems from the fact that dif-
ferent practitioners, researchers, and industries often refer to machine
learning systems in varying contexts and with different scopes. Some
might focus solely on the algorithmic aspects, while others might in-
clude the entire pipeline from data collection to model deployment.
This loose usage of the term reflects the rapidly evolving and multidis-
ciplinary nature of the field.

Given this diversity of perspectives, it is important to establish a clear
and comprehensive definition that encompasses all these aspects. In
this textbook, we take a holistic approach to machine learning systems,
considering not just the algorithms but also the entire ecosystem in
which they operate. Therefore, we define a machine learning system
as follows:



Figure 1.5: Machine learning

systems involve algorithms,

data, and computation,
intertwined together.
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@ Definition of a Machine Learning System

A machine learning system is an integrated computing system
comprising three core components: (1) data that guides algorith-
mic behavior, (2) learning algorithms that extract patterns from
this data, and (3) computing infrastructure that enables both the
learning process (i.e., training) and the application of learned
knowledge (i.e., inference/serving). Together, these components
create a computing system capable of making predictions, gener-
ating content, or taking actions based on learned patterns.

The core of any machine learning system consists of three interre-
lated components, as illustrated in Figure 1.5: Models/Algorithms,
Data, and Computing Infrastructure. These components form a trian-
gular dependency where each element fundamentally shapes the pos-
sibilities of the others. The model architecture dictates both the compu-
tational demands for training and inference, as well as the volume and
structure of data required for effective learning. The data’s scale and
complexity influence what infrastructure is needed for storage and pro-
cessing, while simultaneously determining which model architectures
are feasible. The infrastructure capabilities establish practical limits on
both model scale and data processing capacity, creating a framework
within which the other components must operate.

Model

Each of these components serves a distinct but interconnected pur-
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pose:

e Algorithms: Mathematical models and methods that learn pat-
terns from data to make predictions or decisions

e Data: Processes and infrastructure for collecting, storing, pro-
cessing, managing, and serving data for both training and infer-
ence.

¢ Computing: Hardware and software infrastructure that enables
efficient training, serving, and operation of models at scale.

The interdependency of these components means no single ele-
ment can function in isolation. The most sophisticated algorithm
cannot learn without data or computing resources to run on. The
largest datasets are useless without algorithms to extract patterns or
infrastructure to process them. And the most powerful computing
infrastructure serves no purpose without algorithms to execute or
data to process.

To illustrate these relationships, we can draw an analogy to space
exploration. Algorithm developers are like astronauts—exploring new
frontiers and making discoveries. Data science teams function like mis-
sion control specialists—ensuring the constant flow of critical informa-
tion and resources needed to keep the mission running. Computing in-
frastructure engineers are like rocket engineers—designing and build-
ing the systems that make the mission possible. Just as a space mis-
sion requires the seamless integration of astronauts, mission control,
and rocket systems, a machine learning system demands the careful
orchestration of algorithms, data, and computing infrastructure.

1.5 The ML Systems Lifecycle

Traditional software systems follow a predictable lifecycle where
developers write explicit instructions for computers to execute. These
systems are built on decades of established software engineering
practices. Version control systems maintain precise histories of code
changes. Continuous integration and deployment pipelines automate
testing and release processes. Static analysis tools measure code
quality and identify potential issues. This infrastructure enables
reliable development, testing, and deployment of software systems,
following well-defined principles of software engineering.

Machine learning systems represent a fundamental departure from
this traditional paradigm. While traditional systems execute explicit
programming logic, machine learning systems derive their behavior



Figure 1.6: The typical lifecycle
of a machine learning system.
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from patterns in data. This shift from code to data as the primary
driver of system behavior introduces new complexities.

As illustrated in Figure 1.6, the ML lifecycle consists of intercon-
nected stages from data collection through model monitoring, with
feedback loops for continuous improvement when performance de-
grades or models need enhancement.

o Model Trkneg

|
N — J ! - b

[o-e—— b S S Mozl Massestng

Frstarmarc Dupates

Unlike source code, which changes only when developers modify it,
data reflects the dynamic nature of the real world. Changes in data dis-
tributions can silently alter system behavior. Traditional software en-
gineering tools, designed for deterministic code-based systems, prove
insufficient for managing these data-dependent systems. For example,
version control systems that excel at tracking discrete code changes
struggle to manage large, evolving datasets. Testing frameworks de-
signed for deterministic outputs must be adapted for probabilistic pre-
dictions. This data-dependent nature creates a more dynamic lifecycle,
requiring continuous monitoring and adaptation to maintain system
relevance as real-world data patterns evolve.

Understanding the machine learning system lifecycle requires
examining its distinct stages. Each stage presents unique require-
ments from both learning and infrastructure perspectives. This dual
consideration—of learning needs and systems support—is wildly
important for building effective machine learning systems.

However, the various stages of the ML lifecycle in production are
not isolated; they are, in fact, deeply interconnected. This intercon-
nectedness can create either virtuous or vicious cycles. In a virtuous
cycle, high-quality data enables effective learning, robust infrastruc-
ture supports efficient processing, and well-engineered systems facili-
tate the collection of even better data. However, in a vicious cycle, poor
data quality undermines learning, inadequate infrastructure hampers
processing, and system limitations prevent the improvement of data
collection—each problem compounds the others.

1.6 The Spectrum of ML Systems

The complexity of managing machine learning systems becomes even
more apparent when we consider the broad spectrum across which
ML is deployed today. ML systems exist at vastly different scales and
in diverse environments, each presenting unique challenges and con-
straints.



CHAPTER 1. INTRODUCTION 17

At one end of the spectrum, we have cloud-based ML systems
running in massive data centers. These systems, like large language
models or recommendation engines, process petabytes of data and
serve millions of users simultaneously. They can leverage virtually un-
limited computing resources but must manage enormous operational
complexity and costs.

At the other end, we find TinyML systems running on microcon-
trollers and embedded devices. These systems must perform ML tasks
with severe constraints on memory, computing power, and energy con-
sumption. Imagine a smart home device, such as Alexa or Google As-
sistant, that must recognize voice commands using less power than a
LED bulb, or a sensor that must detect anomalies while running on a
battery for months or even years.

Between these extremes, we find a rich variety of ML systems
adapted for different contexts. Edge ML systems bring computation
closer to data sources, reducing latency and bandwidth requirements
while managing local computing resources. Mobile ML systems must
balance sophisticated capabilities with battery life and processor
limitations on smartphones and tablets. Enterprise ML systems often
operate within specific business constraints, focusing on particular
tasks while integrating with existing infrastructure. Some organiza-
tions employ hybrid approaches, distributing ML capabilities across
multiple tiers to balance various requirements.

1.7 ML System Implications on the ML Lifecy-
cle

The diversity of ML systems across the spectrum represents a complex
interplay of requirements, constraints, and trade-offs. These decisions
fundamentally impact every stage of the ML lifecycle we discussed ear-
lier, from data collection to continuous operation.

Performance requirements often drive initial architectural decisions.
Latency-sensitive applications, like autonomous vehicles or real-time
fraud detection, might require edge or embedded architectures despite
their resource constraints. Conversely, applications requiring massive
computational power for training, such as large language models, nat-
urally gravitate toward centralized cloud architectures. However, raw
performance is just one consideration in a complex decision space.

Resource management varies dramatically across architectures.
Cloud systems must optimize for cost efficiency at scale—balancing
expensive GPU clusters, storage systems, and network bandwidth.
Edge systems face fixed resource limits and must carefully manage
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local compute and storage. Mobile and embedded systems operate
under the strictest constraints, where every byte of memory and
milliwatt of power matters. These resource considerations directly
influence both model design and system architecture.

Operational complexity increases with system distribution. While
centralized cloud architectures benefit from mature deployment tools
and managed services, edge and hybrid systems must handle the com-
plexity of distributed system management. This complexity manifests
throughout the ML lifecycle—from data collection and version control
to model deployment and monitoring. As we discussed in our exam-
ination of technical debt, this operational complexity can compound
over time if not carefully managed.

Data considerations often introduce competing pressures. Privacy
requirements or data sovereignty regulations might push toward edge
or embedded architectures, while the need for large-scale training data
might favor cloud approaches. The velocity and volume of data also
influence architectural choices—real-time sensor data might require
edge processing to manage bandwidth, while batch analytics might
be better suited to cloud processing.

Evolution and maintenance requirements must be considered from
the start. Cloud architectures offer flexibility for system evolution
but can incur significant ongoing costs. Edge and embedded systems
might be harder to update but could offer lower operational overhead.
The continuous cycle of ML systems we discussed earlier becomes
particularly challenging in distributed architectures, where updating
models and maintaining system health requires careful orchestration
across multiple tiers.

These trade-offs are rarely simple binary choices. Modern ML sys-
tems often adopt hybrid approaches, carefully balancing these consid-
erations based on specific use cases and constraints. The key is under-
standing how these decisions will impact the system throughout its
lifecycle, from initial development through continuous operation and
evolution.

1.7.1 Emerging Trends

We are just at the beginning. As machine learning systems continue to
evolve, several key trends are reshaping the landscape of ML system
design and deployment.

The rise of agentic systems marks a profound evolution in ML
systems. Traditional ML systems were primarily reactive—they made
predictions or classifications based on input data. In contrast, agentic
systems can take actions, learn from their outcomes, and adapt their
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behavior accordingly. These systems, exemplified by autonomous
agents that can plan, reason, and execute complex tasks, introduce
new architectural challenges. They require sophisticated frameworks
for decision-making, safety constraints, and real-time interaction with
their environment.

Architectural evolution is being driven by new hardware and de-
ployment patterns. Specialized Al accelerators are emerging across
the spectrum—from powerful data center chips to efficient edge pro-
cessors to tiny neural processing units in mobile devices. This hetero-
geneous computing landscape is enabling new architectural possibili-
ties, such as dynamic model distribution across tiers based on comput-
ing capabilities and current conditions. The traditional boundaries be-
tween cloud, edge, and embedded systems are becoming increasingly
fluid.

Resource efficiency is gaining prominence as the environmental
and economic costs of large-scale ML become more apparent. This
has sparked innovation in model compression, efficient training
techniques, and energy-aware computing. Future systems will likely
need to balance the drive for more powerful models against growing
sustainability concerns. This emphasis on efficiency is particularly
relevant given our earlier discussion of technical debt and operational
costs.

System intelligence is moving toward more autonomous opera-
tion. Future ML systems will likely incorporate more sophisticated
self-monitoring, automated resource management, and adaptive
deployment strategies. This evolution builds upon the continuous
cycle we discussed earlier, but with increased automation in handling
data distribution shifts, model updates, and system optimization.

Integration challenges are becoming more complex as ML systems
interact with broader technology ecosystems. The need to integrate
with existing software systems, handle diverse data sources, and op-
erate across organizational boundaries is driving new approaches to
system design. This integration complexity adds new dimensions to
the technical debt considerations we explored earlier.

These trends suggest that future ML systems will need to be increas-
ingly adaptable and efficient while managing growing complexity. Un-
derstanding these directions is important for building systems that can
evolve with the field while avoiding the accumulation of technical debt
we discussed earlier.



Figure 1.7: Microsoft Farm-
beats: Al, Edge & IoT for Agri-
culture.
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1.8 Real-world Applications and Impact

The ability to build and operationalize ML systems across various
scales and environments has led to transformative changes across
numerous sectors. This section showcases a few examples where
theoretical concepts and practical considerations we have discussed
manifest in tangible, impactful applications and real-world impact.

1.8.1 Case Study: FarmBeats: Edge and Embedded ML
for Agriculture

FarmBeats, a project developed by Microsoft Research, shown in Fig-
ure 1.7 is a significant advancement in the application of machine learn-
ing to agriculture. This system aims to increase farm productivity and
reduce costs by leveraging Al and Iol technologies. FarmBeats ex-
emplifies how edge and embedded ML systems can be deployed in
challenging, real-world environments to solve practical problems. By
bringing ML capabilities directly to the farm, FarmBeats demonstrates
the potential of distributed Al systems in transforming traditional in-
dustries.

FarmBeats

Data Aspects

The data ecosystem in FarmBeats is diverse and distributed. Sensors
deployed across fields collect real-time data on soil moisture, temper-
ature, and nutrient levels. Drones equipped with multispectral cam-
eras capture high-resolution imagery of crops, providing insights into
plant health and growth patterns. Weather stations contribute local cli-
mate data, while historical farming records offer context for long-term
trends. The challenge lies not just in collecting this heterogeneous data,
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but in managing its flow from dispersed, often remote locations with
limited connectivity. FarmBeats employs innovative data transmission
techniques, such as using TV white spaces (unused broadcasting fre-
quencies) to extend internet connectivity to far-flung sensors. This ap-
proach to data collection and transmission embodies the principles of
edge computing we discussed earlier, where data processing begins
at the source to reduce bandwidth requirements and enable real-time
decision making.

Algorithm/Model Aspects

FarmBeats uses a variety of ML algorithms tailored to agricultural
applications. For soil moisture prediction, it uses temporal neural net-
works that can capture the complex dynamics of water movement in
soil. Computer vision algorithms process drone imagery to detect crop
stress, pest infestations, and yield estimates. These models must be
robust to noisy data and capable of operating with limited computa-
tional resources. Machine learning methods such as “transfer learn-
ing” allow models to learn on data-rich farms to be adapted for use
in areas with limited historical data. The system also incorporates a
mixture of methods that combine outputs from multiple algorithms
to improve prediction accuracy and reliability. A key challenge Farm-
Beats addresses is model personalization—adapting general models
to the specific conditions of individual farms, which may have unique
soil compositions, microclimates, and farming practices.

Computing Infrastructure Aspects

FarmBeats exemplifies the edge computing paradigm we explored
in our discussion of the ML system spectrum. At the lowest level, em-
bedded ML models run directly on IoT devices and sensors, perform-
ing basic data filtering and anomaly detection. Edge devices, such as
ruggedized field gateways, aggregate data from multiple sensors and
run more complex models for local decision-making. These edge de-
vices operate in challenging conditions, requiring robust hardware de-
signs and efficient power management to function reliably in remote
agricultural settings. The system employs a hierarchical architecture,
with more computationally intensive tasks offloaded to on-premises
servers or the cloud. This tiered approach allows FarmBeats to balance
the need for real-time processing with the benefits of centralized data
analysis and model training. The infrastructure also includes mecha-
nisms for over-the-air model updates, ensuring that edge devices can
receive improved models as more data becomes available and algo-
rithms are refined.

Impact and Future Implications

FarmBeats shows how ML systems can be deployed in resource-
constrained, real-world environments to drive significant improve-
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ments in traditional industries. By providing farmers with Al-driven
insights, the system has shown potential to increase crop yields,
reduce water usage, and optimize resource allocation. Looking
forward, the FarmBeats approach could be extended to address global
challenges in food security and sustainable agriculture. The success
of this system also highlights the growing importance of edge and
embedded ML in IoT applications, where bringing intelligence closer
to the data source can lead to more responsive, efficient, and scalable
solutions. As edge computing capabilities continue to advance, we
can expect to see similar distributed ML architectures applied to other
domains, from smart cities to environmental monitoring.

1.8.2 Case Study: AlphaFold: Large-Scale Scientific ML

AlphaFold, developed by DeepMind, is a landmark achievement in the
application of machine learning to complex scientific problems. This
Al system is designed to predict the three-dimensional structure of pro-
teins, as shown in Figure 1.8, from their amino acid sequences, a chal-
lenge known as the “protein folding problem” that has puzzled scien-
tists for decades. AlphaFold’s success demonstrates how large-scale
ML systems can accelerate scientific discovery and potentially revolu-
tionize fields like structural biology and drug design. This case study
exemplifies the use of advanced ML techniques and massive computa-
tional resources to tackle problems at the frontiers of science.

T1037 / 6vrd T1049 / 6yaf
90.7 GDT 93.3 GOT
(RNA polymerase domain) (adhesin tip)

@ Experimental result

@ Computational prediction

Data Aspects
The data underpinning AlphaFold’s success is vast and multifaceted.
The primary dataset is the Protein Data Bank (PDB), which contains the
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experimentally determined structures of over 180,000 proteins. This is
complemented by databases of protein sequences, which number in
the hundreds of millions. AlphaFold also utilizes evolutionary data in
the form of multiple sequence alignments (MSAs), which provide in-
sights into the conservation patterns of amino acids across related pro-
teins. The challenge lies notjust in the volume of data, but in its quality
and representation. Experimental protein structures can contain errors
or be incomplete, requiring sophisticated data cleaning and validation
processes. Moreover, the representation of protein structures and se-
quences in a form amenable to machine learning is a significant chal-
lenge in itself. AlphaFold’s data pipeline involves complex preprocess-
ing steps to convert raw sequence and structural data into meaningful
features that capture the physical and chemical properties relevant to
protein folding.

Algorithm/Model Aspects

AlphaFold’s algorithmic approach represents a tour de force in the
application of deep learning to scientific problems. At its core, Al-
phaFold uses a novel neural network architecture that combines with
techniques from computational biology. The model learns to predict
inter-residue distances and torsion angles, which are then used to con-
struct a full 3D protein structure. A key innovation is the use of “equiv-
ariant attention” layers that respect the symmetries inherent in protein
structures. The learning process involves multiple stages, including
initial “pretraining” on a large corpus of protein sequences, followed
by fine-tuning on known structures. AlphaFold also incorporates do-
main knowledge in the form of physics-based constraints and scoring
functions, creating a hybrid system that leverages both data-driven
learning and scientific prior knowledge. The model’s ability to gener-
ate accurate confidence estimates for its predictions is crucial, allowing
researchers to assess the reliability of the predicted structures.

Computing Infrastructure Aspects

The computational demands of AlphaFold epitomize the challenges
of large-scale scientific ML systems. Training the model requires
massive parallel computing resources, leveraging clusters of GPUs
or TPUs (Tensor Processing Units) in a distributed computing envi-
ronment. DeepMind utilized Google’s cloud infrastructure, with the
final version of AlphaFold trained on 128 TPUv3 cores for several
weeks. The inference process, while less computationally intensive
than training, still requires significant resources, especially when
predicting structures for large proteins or processing many proteins in
parallel. To make AlphaFold more accessible to the scientific commu-
nity, DeepMind has collaborated with the European Bioinformatics
Institute to create a public database of predicted protein structures,


https://alphafold.ebi.ac.uk/
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which itself represents a substantial computing and data management
challenge. This infrastructure allows researchers worldwide to access
AlphaFold’s predictions without needing to run the model them-
selves, demonstrating how centralized, high-performance computing
resources can be leveraged to democratize access to advanced ML
capabilities.

Impact and Future Implications

AlphaFold’s impact on structural biology has been profound, with
the potential to accelerate research in areas ranging from fundamental
biology to drug discovery. By providing accurate structural predic-
tions for proteins that have resisted experimental methods, AlphaFold
opens new avenues for understanding disease mechanisms and de-
signing targeted therapies. The success of AlphaFold also serves as
a powerful demonstration of how ML can be applied to other com-
plex scientific problems, potentially leading to breakthroughs in fields
like materials science or climate modeling. However, it also raises im-
portant questions about the role of Al in scientific discovery and the
changing nature of scientific inquiry in the age of large-scale ML sys-
tems. As welook to the future, the AlphaFold approach suggests a new
paradigm for scientific ML, where massive computational resources
are combined with domain-specific knowledge to push the boundaries
of human understanding.

1.8.3 Case Study: Autonomous Vehicles: Spanning the
ML Spectrum

Waymo, a subsidiary of Alphabet Inc., stands at the forefront of au-
tonomous vehicle technology, representing one of the most ambitious
applications of machine learning systems to date. Evolving from the
Google Self-Driving Car Project initiated in 2009, Waymo's approach to
autonomous driving exemplifies how ML systems can span the entire
spectrum from embedded systems to cloud infrastructure. This case
study demonstrates the practical implementation of complex ML sys-
tems in a safety-critical, real-world environment, integrating real-time
decision-making with long-term learning and adaptation.

https:/ /youtu.be/hA_-MkUONfw?si=6DIH7 qwMbeMicn]5

Data Aspects

The data ecosystem underpinning Waymo’s technology is vast
and dynamic. Each vehicle serves as a roving data center, its sensor
suite—comprising LiDAR, radar, and high-resolution cameras—
generating approximately one terabyte of data per hour of driving.
This real-world data is complemented by an even more extensive
simulated dataset, with Waymo’s vehicles having traversed over 20
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CHAPTER 1. INTRODUCTION 25

billion miles in simulation and more than 20 million miles on public
roads. The challenge lies not just in the volume of data, but in its
heterogeneity and the need for real-time processing. Waymo must
handle both structured (e.g., GPS coordinates) and unstructured data
(e.g., camera images) simultaneously. The data pipeline spans from
edge processing on the vehicle itself to massive cloud-based storage
and processing systems. Sophisticated data cleaning and validation
processes are necessary, given the safety-critical nature of the appli-
cation. Moreover, the representation of the vehicle’s environment in
a form amenable to machine learning presents significant challenges,
requiring complex preprocessing to convert raw sensor data into
meaningful features that capture the dynamics of traffic scenarios.

Algorithm/Model Aspects

Waymo’s ML stack represents a sophisticated ensemble of algo-
rithms tailored to the multifaceted challenge of autonomous driving.
The perception system employs deep learning techniques, including
convolutional neural networks, to process visual data for object
detection and tracking. Prediction models, needed for anticipating
the behavior of other road users, leverage recurrent neural networks
to understand temporal sequences. Waymo has developed custom
ML models like VectorNet for predicting vehicle trajectories. The plan-
ning and decision-making systems may incorporate reinforcement
learning or imitation learning techniques to navigate complex traffic
scenarios. A key innovation in Waymo’s approach is the integration
of these diverse models into a coherent system capable of real-time
operation. The ML models must also be interpretable to some degree,
as understanding the reasoning behind a vehicle’s decisions is vital for
safety and regulatory compliance. Waymo'’s learning process involves
continuous refinement based on real-world driving experiences
and extensive simulation, creating a feedback loop that constantly
improves the system’s performance.

Computing Infrastructure Aspects

The computing infrastructure supporting Waymo’s autonomous
vehicles epitomizes the challenges of deploying ML systems across
the full spectrum from edge to cloud. Each vehicle is equipped with
a custom-designed compute platform capable of processing sensor
data and making decisions in real-time, often leveraging specialized
hardware like GPUs or custom Al accelerators. This edge computing
is complemented by extensive use of cloud infrastructure, leveraging
the power of Google’s data centers for training models, running
large-scale simulations, and performing fleet-wide learning. The
connectivity between these tiers is critical, with vehicles requiring reli-
able, high-bandwidth communication for real-time updates and data
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uploading. Waymo's infrastructure must be designed for robustness
and fault tolerance, ensuring safe operation even in the face of hard-
ware failures or network disruptions. The scale of Waymo’s operation
presents significant challenges in data management, model deploy-
ment, and system monitoring across a geographically distributed fleet
of vehicles.

Impact and Future Implications

Waymo's impact extends beyond technological advancement, poten-
tially revolutionizing transportation, urban planning, and numerous
aspects of daily life. The launch of Waymo One, a commercial ride-
hailing service using autonomous vehicles in Phoenix, Arizona, rep-
resents a significant milestone in the practical deployment of Al sys-
tems in safety-critical applications. Waymo’s progress has broader im-
plications for the development of robust, real-world Al systems, driv-
ing innovations in sensor technology, edge computing, and Al safety
that have applications far beyond the automotive industry. However,
it also raises important questions about liability, ethics, and the in-
teraction between Al systems and human society. As Waymo contin-
ues to expand its operations and explore applications in trucking and
last-mile delivery, it serves as an important test bed for advanced ML
systems, driving progress in areas such as continual learning, robust
perception, and human-Al interaction. The Waymo case study under-
scores both the tremendous potential of ML systems to transform in-
dustries and the complex challenges involved in deploying Al in the
real world.

1.9 Challenges and Considerations

Building and deploying machine learning systems presents unique
challenges that go beyond traditional software development. These
challenges help explain why creating effective ML systems is about
more than just choosing the right algorithm or collecting enough data.
Let’s explore the key areas where ML practitioners face significant
hurdles.

1.9.1 Data Challenges

The foundation of any ML system is its data, and managing this data in-
troduces several fundamental challenges. First, there’s the basic ques-
tion of data quality - real-world data is often messy and inconsistent.
Imagine a healthcare application that needs to process patient records
from different hospitals. Each hospital might record information dif-
ferently, use different units of measurement, or have different stan-
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dards for what data to collect. Some records might have missing infor-
mation, while others might contain errors or inconsistencies that need
to be cleaned up before the data can be useful.

As ML systems grow, they often need to handle increasingly large
amounts of data. A video streaming service like Netflix, for example,
needs to process billions of viewer interactions to power its recommen-
dation system. This scale introduces new challenges in how to store,
process, and manage such large datasets efficiently.

Another critical challenge is how data changes over time. This phe-
nomenon, known as “data drift,” occurs when the patterns in new data
begin to differ from the patterns the system originally learned from.
For example, many predictive models struggled during the COVID-19
pandemic because consumer behavior changed so dramatically that
historical patterns became less relevant. ML systems need ways to de-
tect when this happens and adapt accordingly.

1.9.2 Model Challenges

Creating and maintaining the ML models themselves presents another
set of challenges. Modern ML models, particularly in deep learning,
can be extremely complex. Consider a language model like GPT-3,
which has hundreds of billions of parameters (the individual settings
the model learns during training). This complexity creates practical
challenges: these models require enormous computing power to train
and run, making it difficult to deploy them in situations with limited
resources, like on mobile phones or IoT devices.

Training these models effectively is itself a significant challenge. Un-
like traditional programming where we write explicit instructions, ML
models learn from examples. This learning process involves many
choices: How should we structure the model? How long should we
train it? How can we tell if it’s learning the right things? Making these
decisions often requires both technical expertise and considerable trial
and error.

A particularly important challenge is ensuring that models work
well in real-world conditions. A model might perform excellently on
its training data but fail when faced with slightly different situations in
the real world. This gap between training performance and real-world
performance is a central challenge in machine learning, especially for
critical applications like autonomous vehicles or medical diagnosis
systems.
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1.9.3 System Challenges

Getting ML systems to work reliably in the real world introduces its
own set of challenges. Unlike traditional software that follows fixed
rules, ML systems need to handle uncertainty and variability in their
inputs and outputs. They also typically need both training systems
(for learning from data) and serving systems (for making predictions),
each with different requirements and constraints.

Consider a company building a speech recognition system. They
need infrastructure to collect and store audio data, systems to train
models on this data, and then separate systems to actually process
users’ speech in real-time. Each part of this pipeline needs to work
reliably and efficiently, and all the parts need to work together seam-
lessly.

These systems also need constant monitoring and updating. How
do we know if the system is working correctly? How do we update
models without interrupting service? How do we handle errors or
unexpected inputs? These operational challenges become particularly
complex when ML systems are serving millions of users.

1.9.4 Ethical and Social Considerations

As ML systems become more prevalent in our daily lives, their broader
impacts on society become increasingly important to consider. One
major concern is fairness - ML systems can sometimes learn to make
decisions that discriminate against certain groups of people. This often
happens unintentionally, as the systems pick up biases present in their
training data. For example, a job application screening system might
inadvertently learn to favor certain demographics if those groups were
historically more likely to be hired.

Another important consideration is transparency. Many modern
ML models, particularly deep learning models, work as “black boxes” -
while they can make predictions, it’s often difficult to understand how
they arrived at their decisions. This becomes particularly problematic
when ML systems are making important decisions about people’s lives,
such as in healthcare or financial services.

Privacy is also a major concern. ML systems often need large
amounts of data to work effectively, but this data might contain
sensitive personal information. How do we balance the need for data
with the need to protect individual privacy? How do we ensure that
models don’t inadvertently memorize and reveal private information?

These challenges aren’t merely technical problems to be solved, but
ongoing considerations that shape how we approach ML system de-
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sign and deployment. Throughout this book, we’ll explore these chal-
lenges in detail and examine strategies for addressing them effectively.

1.10 Future Directions

As we look to the future of machine learning systems, several exciting
trends are shaping the field. These developments promise to both solve
existing challenges and open new possibilities for what ML systems
can achieve.

One of the most significant trends is the democratization of Al
technology. Just as personal computers transformed computing from
specialized mainframes to everyday tools, ML systems are becoming
more accessible to developers and organizations of all sizes. Cloud
providers now offer pre-trained models and automated ML platforms
that reduce the expertise needed to deploy Al solutions. This democ-
ratization is enabling new applications across industries, from small
businesses using Al for customer service to researchers applying ML
to previously intractable problems.

As concerns about computational costs and environmental impact
grow, there’s an increasing focus on making ML systems more effi-
cient. Researchers are developing new techniques for training models
with less data and computing power. Innovation in specialized hard-
ware, from improved GPUs to custom Al chips, is making ML systems
faster and more energy-efficient. These advances could make sophisti-
cated Al capabilities available on more devices, from smartphones to
IoT sensors.

Perhaps the most transformative trend is the development of more
autonomous ML systems that can adapt and improve themselves.
These systems are beginning to handle their own maintenance tasks
- detecting when they need retraining, automatically finding and
correcting errors, and optimizing their own performance. This
automation could dramatically reduce the operational overhead of
running ML systems while improving their reliability.

While these trends are promising, it’s important to recognize the
field’s limitations. Creating truly artificial general intelligence remains
a distant goal. Current ML systems excel at specific tasks but lack
the flexibility and understanding that humans take for granted. Chal-
lenges around bias, transparency, and privacy continue to require care-
ful consideration. As ML systems become more prevalent, addressing
these limitations while leveraging new capabilities will be crucial.
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1.11 Learning Path and Book Structure

This book is designed to guide you from understanding the fundamen-
tals of ML systems to effectively designing and implementing them. To
address the complexities and challenges of Machine Learning Systems
engineering, we’ve organized the content around five fundamental pil-
lars that encompass the lifecycle of ML systems. These pillars provide
a framework for understanding, developing, and maintaining robust
ML systems.

Technical
Foundation ML Systems
Efficiency & Engineering
Optimization
I
Benchmark & S,
Evaluation
b 'g o § 2 § & g
Rebustness & - = £
iahili E 8 % ‘E g g. -g, -] 2 -
Reliahility a8 E g 5 g > ® S 2 E
. B 5= £
Responsible & E 3 2 §.£ ue
Ethical Engr. N /
\n—/

Asillustrated in Figure Figure 1.9, the five pillars central to the frame-
work are:

e Data: Emphasizing data engineering and foundational princi-
ples critical to how Al operates in relation to data.

* Training: Exploring the methodologies for Al training, focus-
ing on efficiency, optimization, and acceleration techniques to
enhance model performance.

* Deployment: Encompassing benchmarks, on-device learning
strategies, and machine learning operations to ensure effective
model application.

® Operations: Highlighting the maintenance challenges unique to
machine learning systems, which require specialized approaches
distinct from traditional engineering systems.

¢ Ethics & Governance: Addressing concerns such as security, pri-
vacy, responsible Al practices, and the broader societal implica-
tions of Al technologies.

Each pillar represents a critical phase in the lifecycle of ML systems
and is composed of foundational elements that build upon each other.
This structure ensures a comprehensive understanding of MLSE, from
basic principles to advanced applications and ethical considerations.
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For more detailed information about the book’s overview, contents,
learning outcomes, target audience, prerequisites, and navigation
guide, please refer to the About the Book section. There, you'll also
find valuable details about our learning community and how to
maximize your experience with this resource.
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Chapter 2

ML Systems

Machine learning (ML) systems, built on the foundation of comput-
ing systems, hold the potential to transform our world. These systems,
with their specialized roles and real-time computational capabilities,
represent a critical junction where data and computation meet on a
micro-scale. They are specifically tailored to optimize performance,
energy usage, and spatial efficiency—key factors essential for the suc-
cessful implementation of ML systems.

As this chapter progresses, we will explore ML systems’ complex
and fascinating world. We'll gain insights into their structural design
and operational features and understand their key role in powering
ML applications. Starting with the basics of microcontroller units, we
will examine the interfaces and peripherals that improve their func-

Figure 2.1: DALL-E 3 Prompt:
Illustration in a rectangular for-
mat depicting the merger of embed-
ded systems with Embedded Al
The left half of the image portrays
traditional embedded systems, in-
cluding microcontrollers and pro-
cessors, detailed and precise. The
right half showcases the world
of artificial intelligence, with ab-
stract representations of machine
learning models, neurons, and
data flow. The two halves are dis-
tinctly separated, emphasizing the
individual significance of embed-
ded tech and Al, but they come to-
gether in harmony at the center.
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tionalities. This chapter is designed to be a comprehensive guide that
explains the nuanced aspects of different ML systems.

@ Learning Objectives

* Understand the key characteristics and differences between
Cloud ML, Edge ML, and TinyML systems.

¢ Analyze the benefits and challenges associated with each
ML paradigm.

¢ Explore real-world applications and use cases for Cloud
ML, Edge ML, and TinyML.

* Compare the performance aspects of each ML approach,
including latency, privacy, and resource utilization.

¢ Examine the evolving landscape of ML systems and poten-
tial future developments.

2.1 Overview

ML is rapidly evolving, with new paradigms reshaping how models
are developed, trained, and deployed. The field is experiencing signif-
icant innovation driven by advancements in hardware, software, and
algorithmic techniques. These developments are enabling machine
learning to be applied in diverse settings, from large-scale cloud in-
frastructures to edge devices and even tiny, resource-constrained envi-
ronments.

Modern machine learning systems span a spectrum of deployment
options, each with its own set of characteristics and use cases. At one
end, we have cloud-based ML, which leverages powerful centralized
computing resources for complex, data-intensive tasks. Moving along
the spectrum, we encounter edge ML, which brings computation closer
to the data source for reduced latency and improved privacy. At the
far end, we find TinyML, which enables machine learning on extremely
low-power devices with severe memory and processing constraints.

This chapter explores the landscape of contemporary machine learn-
ing systems, covering three key approaches: Cloud ML, Edge ML, and
TinyML. Figure 2.2 illustrates the spectrum of distributed intelligence
across these approaches, providing a visual comparison of their charac-
teristics. We will examine the unique characteristics, advantages, and
challenges of each approach, as depicted in the figure. Additionally,
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we will discuss the emerging trends and technologies that are shap-
ing the future of machine learning deployment, considering how they
might influence the balance between these three paradigms.

Cloud
o s et Figure 2.2: Cloud vs. Edge
&y vs. TinyML: The Spectrum
Seawey . of Distributed Intelligence.
Intelligent Device Source: ABI Research -
oAy G TinyML.
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The evolution of machine learning systems can be seen as a progres-
sion from centralized to distributed computing paradigms:

1. Cloud ML: Initially, ML was predominantly cloud-based.
Powerful servers in data centers were used to train and run
large ML models. This approach leverages vast computational
resources and storage capacities, enabling the development of
complex models trained on massive datasets. Cloud ML excels
at tasks requiring extensive processing power and is ideal for
applications where real-time responsiveness isn't critical.

2. Edge ML: As the need for real-time, low-latency processing
grew, Edge ML emerged. This paradigm brings inference
capabilities closer to the data source, typically on edge devices
such as smartphones, smart cameras, or Iol' gateways. Edge ML
reduces latency, enhances privacy by keeping data local, and can
operate with intermittent cloud connectivity. It's particularly
useful for applications requiring quick responses or handling
sensitive data.

3. TinyML: The latest development in this progression is TinyML,
which enables ML models to run on extremely resource-
constrained microcontrollers and small embedded systems.
TinyML allows for on-device inference without relying on
connectivity to the cloud or edge, opening up new possibilities
for intelligent, battery-operated devices. This approach is crucial



Figure 2.3: From cloud GPUs
to microcontrollers: Navigat-
ing the memory and storage
landscape across computing
devices. Source: (J. Lin et al.
2023)
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for applications where size, power consumption, and cost are
critical factors.

Each of these paradigms has its own strengths and is suited to dif-
ferent use cases:

¢ Cloud ML remains essential for tasks requiring massive compu-
tational power or large-scale data analysis.

e Edge ML is ideal for applications needing low-latency responses
or local data processing.

¢ TinyML enables Al capabilities in small, power-efficient devices,
expanding the reach of ML to new domains.

The progression from Cloud to Edge to TinyML reflects a broader
trend in computing towards more distributed, localized processing.
This evolution is driven by the need for faster response times, im-
proved privacy, reduced bandwidth usage, and the ability to operate
in environments with limited or no connectivity.

Figure 2.3 illustrates the key differences between Cloud ML, Edge
ML, and TinyML in terms of hardware, latency, connectivity, power re-
quirements, and model complexity. As we move from Cloud to Edge
to TinyML, we see a dramatic reduction in available resources, which
presents significant challenges for deploying sophisticated machine
learning models. This resource disparity becomes particularly appar-
ent when attempting to deploy deep learning models on microcon-
trollers, the primary hardware platform for TinyML. These tiny devices
have severely constrained memory and storage capacities, which are of-
ten insufficient for conventional deep learning models. We will learn
to put these things into perspective in this chapter.

Cloud Al Mobile AT Tiny Al . MobileNetV2
(NVIDIAVIOD) P (Phane 11) P (STM32F746) ResNet-39 MoblIeNEINZ T2 (inik)
Memory 16 GB 4GR 300, 30kB  «gap+ 7.2 MB 6.8 MB 1.7 MR
Storage 8P 0, g OO0 nB cpaps 102MB 13.6 MB 14 MB

2.2 Cloud ML

Cloud ML leverages powerful servers in the cloud for training and run-
ning large, complex ML models and relies on internet connectivity. Fig-
ure 2.4 provides an overview of Cloud ML's capabilities which we will
discuss in greater detail throughout this section.
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2.2.1 Characteristics

Definition of Cloud ML

Cloud Machine Learning (Cloud ML) is a subfield of machine learn-
ing that leverages the power and scalability of cloud computing infras-
tructure to develop, train, and deploy machine learning models. By uti-
lizing the vast computational resources available in the cloud, Cloud
ML enables the efficient handling of large-scale datasets and complex
machine learning algorithms.

Centralized Infrastructure

One of the key characteristics of Cloud ML is its centralized infras-
tructure. Figure 2.5 illustrates this concept with an example from
Google’s Cloud TPU data center. Cloud service providers offer a
virtual platform that consists of high-capacity servers, expansive
storage solutions, and robust networking architectures, all housed
in data centers distributed across the globe. As shown in the figure,
these centralized facilities can be massive in scale, housing rows
upon rows of specialized hardware. This centralized setup allows for
the pooling and efficient management of computational resources,
making it easier to scale machine learning projects as needed.

Scalable Data Processing and Model Training

Cloud ML excels in its ability to process and analyze massive vol-

Figure 2.4: Section overview
for Cloud ML.
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Figure 2.5: Cloud TPU data
center at Google.  Source:
Google.

umes of data. The centralized infrastructure is designed to handle
complex computations and model training tasks that require signifi-
cant computational power. By leveraging the scalability of the cloud,
machine learning models can be trained on vast amounts of data, lead-
ing to improved learning capabilities and predictive performance.

Flexible Deployment and Accessibility

Another advantage of Cloud ML is the flexibility it offers in terms
of deployment and accessibility. Once a machine learning model is
trained and validated, it can be easily deployed and made accessible
to users through cloud-based services. This allows for seamless inte-
gration of machine learning capabilities into various applications and
services, regardless of the user’s location or device.

Collaboration and Resource Sharing

Cloud ML promotes collaboration and resource sharing among
teams and organizations. The centralized nature of the cloud in-
frastructure enables multiple users to access and work on the same
machine learning projects simultaneously. This collaborative ap-
proach facilitates knowledge sharing, accelerates the development
process, and optimizes resource utilization.

Cost-Effectiveness and Scalability

By leveraging the pay-as-you-go pricing model offered by cloud
service providers, Cloud ML allows organizations to avoid the
upfront costs associated with building and maintaining their own
machine learning infrastructure. The ability to scale resources up or
down based on demand ensures cost-effectiveness and flexibility in
managing machine learning projects.

Cloud ML has revolutionized the way machine learning is ap-
proached, making it more accessible, scalable, and efficient. It has
opened up new possibilities for organizations to harness the power


https://blog.google/technology/ai/google-gemini-ai/#scalable-efficient
../training/training.qmd
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of machine learning without the need for significant investments in
hardware and infrastructure.

2.2.2 Benefits

Cloud ML offers several significant benefits that make it a powerful
choice for machine learning projects:

Immense Computational Power

One of the key advantages of Cloud ML is its ability to provide vast
computational resources. The cloud infrastructure is designed to han-
dle complex algorithms and process large datasets efficiently. This is
particularly beneficial for machine learning models that require signif-
icant computational power, such as deep learning networks or models
trained on massive datasets. By leveraging the cloud’s computational
capabilities, organizations can overcome the limitations of local hard-
ware setups and scale their machine learning projects to meet demand-
ing requirements.

Dynamic Scalability

Cloud ML offers dynamic scalability, allowing organizations to eas-
ily adapt to changing computational needs. As the volume of data
grows or the complexity of machine learning models increases, the
cloud infrastructure can seamlessly scale up or down to accommodate
these changes. This flexibility ensures consistent performance and en-
ables organizations to handle varying workloads without the need for
extensive hardware investments. With Cloud ML, resources can be al-
located on-demand, providing a cost-effective and efficient solution for
managing machine learning projects.

Access to Advanced Tools and Algorithms

Cloud ML platforms provide access to a wide range of advanced
tools and algorithms specifically designed for machine learning.
These tools often include pre-built libraries, frameworks, and APIs
that simplify the development and deployment of machine learning
models. Developers can leverage these resources to accelerate the
building, training, and optimization of sophisticated models. By
utilizing the latest advancements in machine learning algorithms and
techniques, organizations can stay at the forefront of innovation and
achieve better results in their machine learning projects.

Collaborative Environment

Cloud ML fosters a collaborative environment that enables teams
to work together seamlessly. The centralized nature of the cloud
infrastructure allows multiple users to access and contribute to the
same machine learning projects simultaneously. This collaborative
approach facilitates knowledge sharing, promotes cross-functional
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collaboration, and accelerates the development and iteration of ma-
chine learning models. Teams can easily share code, datasets, and
results, enabling efficient collaboration and driving innovation across
the organization.

Cost-Effectiveness

Adopting Cloud ML can be a cost-effective solution for orga-
nizations, especially compared to building and maintaining an
on-premises machine learning infrastructure. Cloud service providers
offer flexible pricing models, such as pay-as-you-go or subscription-
based plans, allowing organizations to pay only for the resources they
consume. This eliminates the need for upfront capital investments in
hardware and infrastructure, reducing the overall cost of implement-
ing machine learning projects. Additionally, the scalability of Cloud
ML ensures that organizations can optimize their resource usage and
avoid over provisioning, further enhancing cost-efficiency.

The benefits of Cloud ML, including its immense computational
power, dynamic scalability, access to advanced tools and algorithms,
collaborative environment, and cost-effectiveness, make it a com-
pelling choice for organizations looking to harness the potential
of machine learning. By leveraging the capabilities of the cloud,
organizations can accelerate their machine learning initiatives, drive
innovation, and gain a competitive edge in today’s data-driven
landscape.

2.2.3 Challenges

While Cloud ML offers numerous benefits, it also comes with certain
challenges that organizations need to consider:

Latency Issues

One of the main challenges of Cloud ML is the potential for latency
issues, especially in applications that require real-time responses.
Since data needs to be sent from the data source to centralized cloud
servers for processing and then back to the application, there can be
delays introduced by network transmission. This latency can be a
significant drawback in time-sensitive scenarios, such as autonomous
vehicles, real-time fraud detection, or industrial control systems,
where immediate decision-making is critical. Developers need to care-
fully design their systems to minimize latency and ensure acceptable
response times.

Data Privacy and Security Concerns

Centralizing data processing and storage in the cloud can raise con-
cerns about data privacy and security. When sensitive data is trans-
mitted and stored in remote data centers, it becomes vulnerable to po-
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tential cyber-attacks and unauthorized access. Cloud data centers can
become attractive targets for hackers seeking to exploit vulnerabilities
and gain access to valuable information. Organizations need to invest
in robust security measures, such as encryption, access controls, and
continuous monitoring, to protect their data in the cloud. Compliance
with data privacy regulations, such as GDPR or HIPAA, also becomes
a critical consideration when handling sensitive data in the cloud.

Cost Considerations

As data processing needs grow, the costs associated with using
cloud services can escalate. While Cloud ML offers scalability and
flexibility, organizations dealing with large data volumes may face
increasing costs as they consume more cloud resources. The pay-as-
you-go pricing model of cloud services means that costs can quickly
add up, especially for compute-intensive tasks like model training
and inference. Organizations need to carefully monitor and optimize
their cloud usage to ensure cost-effectiveness. They may need to
consider strategies such as data compression, efficient algorithm
design, and resource allocation optimization to minimize costs while
still achieving desired performance.

Dependency on Internet Connectivity

Cloud ML relies on stable and reliable internet connectivity to func-
tion effectively. Since data needs to be transmitted to and from the
cloud, any disruptions or limitations in network connectivity can im-
pact the performance and availability of the machine learning system.
This dependency on internet connectivity can be a challenge in scenar-
ios where network access is limited, unreliable, or expensive. Orga-
nizations need to ensure robust network infrastructure and consider
failover mechanisms or offline capabilities to mitigate the impact of
connectivity issues.

Vendor Lock-In

When adopting Cloud ML, organizations often become dependent
on the specific tools, APIs, and services provided by their chosen cloud
vendor. This vendor lock-in can make it difficult to switch providers
or migrate to different platforms in the future. Organizations may face
challenges in terms of portability, interoperability, and cost when con-
sidering a change in their cloud ML provider. It is important to care-
fully evaluate vendor offerings, consider long-term strategic goals, and
plan for potential migration scenarios to minimize the risks associated
with vendor lock-in.

Addressing these challenges requires careful planning, architectural
design, and risk mitigation strategies. Organizations need to weigh
the benefits of Cloud ML against the potential challenges and make in-
formed decisions based on their specific requirements, data sensitivity,
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and business objectives. By proactively addressing these challenges,
organizations can effectively leverage the power of Cloud ML while
ensuring data privacy, security, cost-effectiveness, and overall system
reliability.

2.2.4 Example Use Cases

Cloud ML has found widespread adoption across various domains,
revolutionizing the way businesses operate and users interact with
technology. Let’s explore some notable examples of Cloud ML in ac-
tion:

Virtual Assistants

Cloud ML plays a crucial role in powering virtual assistants like Siri
and Alexa. These systems leverage the immense computational capa-
bilities of the cloud to process and analyze voice inputs in real-time.
By harnessing the power of natural language processing and machine
learning algorithms, virtual assistants can understand user queries, ex-
tract relevant information, and generate intelligent and personalized
responses. The cloud’s scalability and processing power enable these
assistants to handle a vast number of user interactions simultaneously,
providing a seamless and responsive user experience.

Recommendation Systems

Cloud ML forms the backbone of advanced recommendation sys-
tems used by platforms like Netflix and Amazon. These systems use
the cloud’s ability to process and analyze massive datasets to uncover
patterns, preferences, and user behavior. By leveraging collaborative
filtering and other machine learning techniques, recommendation sys-
tems can offer personalized content or product suggestions tailored to
each user’s interests. The cloud’s scalability allows these systems to
continuously update and refine their recommendations based on the
ever-growing amount of user data, enhancing user engagement and
satisfaction.

Fraud Detection

In the financial industry, Cloud ML has revolutionized fraud detec-
tion systems. By leveraging the cloud’s computational power, these
systems can analyze vast amounts of transactional data in real-time to
identify potential fraudulent activities. Machine learning algorithms
trained on historical fraud patterns can detect anomalies and suspi-
cious behavior, enabling financial institutions to take proactive mea-
sures to prevent fraud and minimize financial losses. The cloud’s abil-
ity to process and store large volumes of data makes it an ideal platform
for implementing robust and scalable fraud detection systems.

Personalized User Experiences
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Cloud ML is deeply integrated into our online experiences, shaping
the way we interact with digital platforms. From personalized ads on
social media feeds to predictive text features in email services, Cloud
ML powers smart algorithms that enhance user engagement and con-
venience. It enables e-commerce sites to recommend products based
on a user’s browsing and purchase history, fine-tunes search engines
to deliver accurate and relevant results, and automates the tagging and
categorization of photos on platforms like Facebook. By leveraging the
cloud’s computational resources, these systems can continuously learn
and adapt to user preferences, providing a more intuitive and person-
alized user experience.

Security and Anomaly Detection

Cloud ML plays a role in bolstering user security by powering
anomaly detection systems. These systems continuously monitor user
activities and system logs to identify unusual patterns or suspicious
behavior. By analyzing vast amounts of data in real-time, Cloud ML
algorithms can detect potential cyber threats, such as unauthorized
access attempts, malware infections, or data breaches. The cloud’s
scalability and processing power enable these systems to handle
the increasing complexity and volume of security data, providing a
proactive approach to protecting users and systems from potential
threats.

2.3 Edge ML

2.3.1 Characteristics

Definition of Edge ML

Edge Machine Learning (Edge ML) runs machine learning algo-
rithms directly on endpoint devices or closer to where the data is
generated rather than relying on centralized cloud servers. This
approach brings computation closer to the data source, reducing the
need to send large volumes of data over networks, often resulting
in lower latency and improved data privacy. Figure 2.6 provides an
overview of this section.

Decentralized Data Processing

In Edge ML, data processing happens in a decentralized fashion, as
illustrated in Figure 2.7. Instead of sending data to remote servers, the
data is processed locally on devices like smartphones, tablets, or Inter-
net of Things (IoT) devices. The figure showcases various examples of
these edge devices, including wearables, industrial sensors, and smart
home appliances. This local processing allows devices to make quick
decisions based on the data they collect without relying heavily on a



Figure 2.6: Section overview
for Edge ML.

Figure 2.7: Edge ML Examples.
Source: Edge Impulse.
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Local Data Storage and Computation

Local data storage and computation are key features of Edge ML.
This setup ensures that data can be stored and analyzed directly on
the devices, thereby maintaining the privacy of the data and reduc-
ing the need for constant internet connectivity. Moreover, this often
leads to more efficient computation, as data doesn’t have to travel long
distances, and computations are performed with a more nuanced un-
derstanding of the local context, which can sometimes result in more

insightful analyses.



CHAPTER 2. ML SYSTEMS 45

2.3.2 Benefits

Reduced Latency

One of Edge ML's main advantages is the significant latency reduc-
tion compared to Cloud ML. This reduced latency can be a critical ben-
efit in situations where milliseconds count, such as in autonomous ve-
hicles, where quick decision-making can mean the difference between
safety and an accident.

Enhanced Data Privacy

Edge ML also offers improved data privacy, as data is primarily
stored and processed locally. This minimizes the risk of data breaches
that are more common in centralized data storage solutions. Sensitive
information can be kept more secure, as it’s not sent over networks
that could be intercepted.

Lower Bandwidth Usage

Operating closer to the data source means less data must be sent over
networks, reducing bandwidth usage. This can result in cost savings
and efficiency gains, especially in environments where bandwidth is
limited or costly.

2.3.3 Challenges

Limited Computational Resources Compared to Cloud ML

However, Edge ML has its challenges. One of the main concerns
is the limited computational resources compared to cloud-based so-
lutions. Endpoint devices may have a different processing power or
storage capacity than cloud servers, limiting the complexity of the ma-
chine learning models that can be deployed.

Complexity in Managing Edge Nodes

Managing a network of edge nodes can introduce complexity, espe-
cially regarding coordination, updates, and maintenance. Ensuring all
nodes operate seamlessly and are up-to-date with the latest algorithms
and security protocols can be a logistical challenge.

Security Concerns at the Edge Nodes

While Edge ML offers enhanced data privacy, edge nodes can some-
times be more vulnerable to physical and cyber-attacks. Developing
robust security protocols that protect data at each node without com-
promising the system’s efficiency remains a significant challenge in de-
ploying Edge ML solutions.

2.3.4 Example Use Cases

Edge ML has many applications, from autonomous vehicles and smart
homes to industrial Internet of Things (IoT). These examples were cho-
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sen to highlight scenarios where real-time data processing, reduced
latency, and enhanced privacy are not just beneficial but often critical
to the operation and success of these technologies. They demonstrate
the role that Edge ML can play in driving advancements in various
sectors, fostering innovation, and paving the way for more intelligent,
responsive, and adaptive systems.

Autonomous Vehicles

Autonomous vehicles stand as a prime example of Edge ML's poten-
tial. These vehicles rely heavily on real-time data processing to navi-
gate and make decisions. Localized machine learning models assist in
quickly analyzing data from various sensors to make immediate driv-
ing decisions, ensuring safety and smooth operation.

Smart Homes and Buildings

Edge ML plays a crucial role in efficiently managing various systems
in smart homes and buildings, from lighting and heating to security.
By processing data locally, these systems can operate more respon-
sively and harmoniously with the occupants’ habits and preferences,
creating a more comfortable living environment.

Industrial IoT

The Industrial Iol' leverages Edge ML to monitor and control
complex industrial processes. Here, machine learning models can
analyze data from numerous sensors in real-time, enabling predictive
maintenance, optimizing operations, and enhancing safety measures.
This revolution in industrial automation and efficiency is transforming
manufacturing and production across various sectors.

The applicability of Edge ML is vast and not limited to these exam-
ples. Various other sectors, including healthcare, agriculture, and ur-
ban planning, are exploring and integrating Edge ML to develop inno-
vative solutions responsive to real-world needs and challenges, herald-
ing a new era of smart, interconnected systems.

2.4 Tiny ML

2.4.1 Characteristics

Definition of TinyML

TinyML sits at the crossroads of embedded systems and machine
learning, representing a burgeoning field that brings smart algorithms
directly to tiny microcontrollers and sensors. These microcontrollers
operate under severe resource constraints, particularly regarding mem-
ory, storage, and computational power. Figure 2.8 encapsulates the
key aspects of TinyML discussed in this section.

On-Device Machine Learning
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In TinyML, the focus is on on-device machine learning. This means
that machine learning models are deployed and trained on the device,
eliminating the need for external servers or cloud infrastructures. This
allows TinyML to enable intelligent decision-making right where the
data is generated, making real-time insights and actions possible, even
in settings where connectivity is limited or unavailable.

Low Power and Resource-Constrained Environments

TinyML excels in low-power and resource-constrained settings.
These environments require highly optimized solutions that function
within the available resources. Figure 2.9 showcases an example
TinyML device kit, illustrating the compact nature of these systems.
These devices can typically fit in the palm of your hand or, in some
cases, are even as small as a fingernail. TinyML meets the need for
efficiency through specialized algorithms and models designed to
deliver decent performance while consuming minimal energy, thus
ensuring extended operational periods, even in battery-powered
devices like those shown.

O Caution 1: TinyML with Arduino

Get ready to bring machine learning to the smallest of devices!
In the embedded machine learning world, TinyML is where re-
source constraints meet ingenuity. This Colab notebook will
walk you through building a gesture recognition model designed

Figure 2.8: Section overview
for Tiny ML.



Figure 2.9: Examples of

TinyML device kits. Source:

Widening Access to Applied
Machine  Learning  with
TinyML.
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on an Arduino board. You'll learn how to train a small but effec-
tive neural network, optimize it for minimal memory usage, and
deploy it to your microcontroller. If you're excited about making
everyday objects smarter, this is where it begins!

CO Open in Colab

2.4.2 Benefits

Extremely Low Latency

One of the standout benefits of TinyML is its ability to offer ultra-low
latency. Since computation occurs directly on the device, the time re-
quired to send data to external servers and receive a response is elim-
inated. This is crucial in applications requiring immediate decision-
making, enabling quick responses to changing conditions.

High Data Security

TinyML inherently enhances data security. Because data processing
and analysis happen on the device, the risk of data interception dur-
ing transmission is virtually eliminated. This localized approach to
data management ensures that sensitive information stays on the de-
vice, strengthening user data security.

Energy Efficiency

TinyML operates within an energy-efficient framework, a necessity
given its resource-constrained environments. By employing lean algo-
rithms and optimized computational methods, TinyML ensures that
devices can execute complex tasks without rapidly depleting battery
life, making it a sustainable option for long-term deployments.

2.4.3 Challenges

Limited Computational Capabilities
However, the shift to TinyML comes with its set of hurdles. The pri-
mary limitation is the devices” constrained computational capabilities.


https://arxiv.org/pdf/2106.04008.pdf
https://arxiv.org/pdf/2106.04008.pdf
https://arxiv.org/pdf/2106.04008.pdf
https://colab.research.google.com/github/arduino/ArduinoTensorFlowLiteTutorials/blob/master/GestureToEmoji/arduino_tinyml_workshop.ipynb
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The need to operate within such limits means that deployed models
must be simplified, which could affect the accuracy and sophistication
of the solutions.

Complex Development Cycle

TinyML also introduces a complicated development cycle. Craft-
ing lightweight and effective models demands a deep understanding
of machine learning principles and expertise in embedded systems.
This complexity calls for a collaborative development approach, where
multi-domain expertise is essential for success.

Model Optimization and Compression

A central challenge in TinyML is model optimization and compres-
sion. Creating machine learning models that can operate effectively
within the limited memory and computational power of microcon-
trollers requires innovative approaches to model design. Developers
often face the challenge of striking a delicate balance and optimiz-
ing models to maintain effectiveness while fitting within stringent
resource constraints.

2.4.4 Example Use Cases

Wearable Devices

In wearables, TinyML opens the door to smarter, more responsive
gadgets. From fitness trackers offering real-time workout feedback to
smart glasses processing visual data on the fly, TinyML transforms
how we engage with wearable tech, delivering personalized experi-
ences directly from the device.

Predictive Maintenance

In industrial settings, TinyML plays a significant role in predictive
maintenance. By deploying TinyML algorithms on sensors that mon-
itor equipment health, companies can preemptively identify potential
issues, reducing downtime and preventing costly breakdowns. On-site
data analysis ensures quick responses, potentially stopping minor is-
sues from becoming major problems.

Anomaly Detection

TinyML can be employed to create anomaly detection models that
identify unusual data patterns. For instance, a smart factory could use
TinyML to monitor industrial processes and spot anomalies, helping
prevent accidents and improve product quality. Similarly, a security
company could use TinyML to monitor network traffic for unusual pat-
terns, aiding in detecting and preventing cyber-attacks. TinyML could
monitor patient data for anomalies in healthcare, aiding early disease
detection and better patient treatment.

Environmental Monitoring



Figure 2.10: ML Venn diagram.
Source: arXiv
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In environmental monitoring, TinyML enables real-time data analy-
sis from various field-deployed sensors. These could range from city
air quality monitoring to wildlife tracking in protected areas. Through
TinyML, data can be processed locally, allowing for quick responses to
changing conditions and providing a nuanced understanding of envi-
ronmental patterns, crucial for informed decision-making.

In summary, TinyML serves as a trailblazer in the evolution of ma-
chine learning, fostering innovation across various fields by bringing
intelligence directly to the edge. Its potential to transform our inter-
action with technology and the world is immense, promising a future
where devices are connected, intelligent, and capable of making real-
time decisions and responses.

2.5 Comparison

Let’s bring together the different ML variants we’ve explored individu-
ally for a comprehensive view. Figure 2.10 illustrates the relationships
and overlaps between Cloud ML, Edge ML, and TinyML using a Venn
diagram. This visual representation effectively highlights the unique
characteristics of each approach while also showing areas of common-
ality. Each ML paradigm has its own distinct features, but there are
also intersections where these approaches share certain attributes or
capabilities. This diagram helps us understand how these variants re-
late to each other in the broader landscape of machine learning imple-
mentations.

Efficient ML

Cloud ML

For a more detailed comparison of these ML variants, we can refer
to Table 2.1. This table offers a comprehensive analysis of Cloud ML,
Edge ML, and TinyML based on various features and aspects. By ex-
amining these different characteristics side by side, we gain a clearer
perspective on the unique advantages and distinguishing factors of
each approach. This detailed comparison, combined with the visual
overview provided by the Venn diagram, aids in making informed de-
cisions based on the specific needs and constraints of a given applica-
tion or project.


https://arxiv.org/html/2403.19076v1
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Table 2.1: Comparison of feature aspects across Cloud ML, Edge ML,

and TinyML.

Aspect  Cloud ML Edge ML TinyML

ProcessingCentralized Local devices On-device

Loca- servers (Data (closer to data (microcontrollers,

tion Centers) sources) embedded

systems)

Latency High (Depends Moderate Low (Immediate
on internet (Reduced latency  processing
connectivity) compared to without network

Cloud ML) delay)

Data Moderate (Data ~ High (Data Very High (Data

Privacy transmitted over = remains onlocal  processed
networks) networks) on-device, not

transmitted)

Computatibtigh (Utilizes Moderate Low (Limited to

Power powerful data (Utilizes local the power of the
center device embedded
infrastructure) capabilities) system)

Energy  High (Data Moderate (Less Low (Highly

Con- centers consume  than data centers, energy-efficient,

sump-  significant more than designed for low

tion energy) TinyML) power)

Scalability High (Easy to Moderate Low (Limited by
scale with (Depends on the hardware
additional server local device resources of the
resources) capabilities) device)

Cost High (Recurring  Variable Low (Primarily
costs for server (Depends on the  upfront costs for
usage, complexity of hardware
maintenance) local setup) components)

Connectivitfigh (Requires Low (Can Very Low (Can
stable internet operate with operate without
connectivity) intermittent any network

connectivity) connectivity)

Real- Moderate (Can High (Capable of Very High

time be affected by real-time (Immediate

Process- network latency)  processing processing with

ing locally) minimal latency)

ApplicatioBig Data Autonomous Wearables,

Exam- Analysis, Virtual ~ Vehicles, Smart Sensor Networks

ples Assistants Homes
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Aspect  Cloud ML Edge ML TinyML

ComplexitiModerate to Moderate Moderate to
High (Requires (Requires High (Requires
knowledge in knowledge in expertise in
cloud local network embedded
computing) setup) systems)

2.6 Conclusion

In this chapter, we've offered a panoramic view of the evolving
landscape of machine learning, covering cloud, edge, and tiny ML
paradigms. Cloud-based machine learning leverages the immense
computational resources of cloud platforms to enable powerful and
accurate models but comes with limitations, including latency and
privacy concerns. Edge ML mitigates these limitations by bringing
inference directly to edge devices, offering lower latency and reduced
connectivity needs. TinyML takes this further by miniaturizing
ML models to run directly on highly resource-constrained devices,
opening up a new category of intelligent applications.

Each approach has its tradeoffs, including model complexity,
latency, privacy, and hardware costs. Over time, we anticipate
converging these embedded ML approaches, with cloud pre-training
facilitating more sophisticated edge and tiny ML implementations.
Advances like federated learning and on-device learning will enable
embedded devices to refine their models by learning from real-world
data.

The embedded ML landscape is rapidly evolving and poised to en-
able intelligent applications across a broad spectrum of devices and
use cases. This chapter serves as a snapshot of the current state of em-
bedded ML. As algorithms, hardware, and connectivity continue to
improve, we can expect embedded devices of all sizes to become in-
creasingly capable, unlocking transformative new applications for ar-
tificial intelligence.

2.7 Resources

Here is a curated list of resources to support students and instructors
in their learning and teaching journeys. We are continuously working
on expanding this collection and will be adding new exercises soon.
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i Slides

These slides are a valuable tool for instructors to deliver lectures
and for students to review the material at their own pace. We
encourage students and instructors to leverage these slides to
improve their understanding and facilitate effective knowledge
transfer.

Embedded Systems Overview.
Embedded Computer Hardware.
Embedded I/0.

Embedded systems software.
Embedded ML software.
Embedded Inference.

TinyML on Microcontrollers.

TinyML as a Service (TinyMLaaS):

- TinyMLaaS: Introduction.
- TinyMLaaS: Design Overview.

! Videos

Coming soon.

O Exercises

To reinforce the concepts covered in this chapter, we have curated
a set of exercises that challenge students to apply their knowl-
edge and deepen their understanding.

Coming soon.



https://docs.google.com/presentation/d/1Lgrn7bddHYxyrOmk0JfSVmEBimRePqI7WSliUKRPK9E/edit?resourcekey=0-c5JvfDeqHIdV9A5RMAMAyw#slide=id.g94db9f9f78_0_8
https://docs.google.com/presentation/d/1hDCFcOrZ08kZPhY4DA3gVikGUo47HwNyvqNrLW-t-Tg/edit?resourcekey=0-J6ix5AYvZMGbFFOa7ae4Hw#slide=id.g94db9f9f78_0_8
https://docs.google.com/presentation/d/1rnWh9XC6iCKSx_hQd4xq2iIDlpc-GkBQw_GjzlP5mQc/edit#slide=id.g94db9f9f78_0_8
https://docs.google.com/presentation/d/1TApZn9xxPWCRY-D-soJ8YOSsfysnccR5UjOyspzeTuU/edit?resourcekey=0-BRWIyCKPLNQFnIfG0fJJ9A#slide=id.g94db9f9f78_0_8
https://docs.google.com/presentation/d/17wgAfoF24Rcx7uPrbau0c8FyzXIUWbe48qGGBOXXT-g/edit?resourcekey=0-Uv29DvmF7gYzKdOoRtn0vw#slide=id.g94db9f9f78_0_8
https://docs.google.com/presentation/d/1FOUQ9dbe3l_qTa2AnroSbOz0ykuCz5cbTNO77tvFxEs/edit?usp=drive_link
https://docs.google.com/presentation/d/1jwAZz3UOoJTR8PY6Wa34FxijpoDc9gBM/edit?usp=drive_link&ouid=102419556060649178683&rtpof=true&sd=true
https://docs.google.com/presentation/d/1O7bxb36SnexfDI3iE_p0C8JI_VYXAL8cyAx3JKDfeUo/edit?usp=drive_link
https://docs.google.com/presentation/d/1ZUUHtTbKlzeTwVteQMSztscQmdmMxT1A24pBKSys7g0/edit#slide=id.g94db9f9f78_0_2
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Chapter 3

DL Primer
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This section serves as a primer for deep learning, providing systems
practitioners with essential context and foundational knowledge
needed to implement deep learning solutions effectively. Rather than
delving into theoretical depths, we focus on key concepts, architec-
tures, and practical considerations relevant to systems implementation.
We begin with an overview of deep learning’s evolution and its par-
ticular significance in embedded Al systems. Core concepts like
neural networks are introduced with an emphasis on implementation
considerations rather than mathematical foundations.

The primer explores major deep learning architectures from a sys-
tems perspective, examining their practical implications and resource
requirements. We also compare deep learning to traditional machine

Figure 3.1: DALL-E 3 Prompt:
Photo of a classic classroom with
a large blackboard dominating one
wall. Chalk drawings showcase a
detailed deep neural network with
several hidden layers, and each
node and connection is precisely
labeled with white chalk. The rus-
tic wooden floor and brick walls
provide a contrast to the modern
concepts. Surrounding the room,
posters mounted on frames empha-
size deep learning themes: con-
volutional networks, transform-
ers, neurons, activation functions,
and more.



3.1. Overview 56

learning approaches, helping readers make informed architectural
choices based on real-world system constraints. This high-level
overview sets the context for the more detailed systems-focused
techniques and optimizations covered in subsequent chapters.

@ Learning Objectives

* Understand the basic concepts and definitions of deep neu-
ral networks.

* Recognize there are different deep learning model architec-
tures.

¢ Comparison between deep learning and traditional ma-
chine learning approaches across various dimensions.

¢ Acquire the basic conceptual building blocks to dive deeper
into advanced deep-learning techniques and applications.

3.1 Overview

3.1.1 Definition and Importance

Deep learning, a specialized area within machine learning and artifi-
cial intelligence (AI), utilizes algorithms modeled after the structure
and function of the human brain, known as artificial neural networks.
This field is a foundational element in Al, driving progress in diverse
sectors such as computer vision, natural language processing, and
self-driving vehicles. Its significance in embedded Al systems is
highlighted by its capability to handle intricate calculations and
predictions, optimizing the limited resources in embedded settings.

Figure 3.2 provides a visual representation of how deep learning fits
within the broader context of Al and machine learning. The diagram
illustrates the chronological development and relative segmentation of
these three interconnected fields, showcasing deep learning as a spe-
cialized subset of machine learning, which in turn is a subset of Al

As shown in the figure, Al represents the overarching field, encom-
passing all computational methods that mimic human cognitive func-
tions. Machine learning, shown as a subset of Al, includes algorithms
capable of learning from data. Deep learning, the smallest subset in
the diagram, specifically involves neural networks that are able to learn
more complex patterns from large volumes of data.
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3.1.2 Brief History of Deep Learning

The idea of deep learning has origins in early artificial neural networks.
It has experienced several cycles of interest, starting with the introduc-
tion of the Perceptron in the 1950s (Rosenblatt 1957), followed by the
invention of backpropagation algorithms in the 1980s (Rumelhart, Hin-
ton, and Williams 1986).

The term “deep learning” became prominent in the 2000s, character-
ized by advances in computational power and data accessibility. Im-
portant milestones include the successful training of deep networks
like AlexNet (Krizhevsky, Sutskever, and Hinton 2012) by Geoffrey
Hinton, a leading figure in Al, and the renewed focus on neural net-
works as effective tools for data analysis and modeling.

Deep learning has recently seen exponential growth, transforming
various industries. Figure 3.3 illustrates this remarkable progression,
highlighting two key trends in the field. First, the graph shows that
computational growth followed an 18-month doubling pattern from
1952 to 2010. This trend then dramatically accelerated to a 6-month
doubling cycle from 2010 to 2022, indicating a significant leap in com-
putational capabilities.

Second, the figure depicts the emergence of large-scale models be-
tween 2015 and 2022. These models appeared 2 to 3 orders of magni-
tude faster than the general trend, following an even more aggressive
10-month doubling cycle. This rapid scaling of model sizes represents
a paradigm shift in deep learning capabilities.

Multiple factors have contributed to this surge, including advance-

Figure 3.2: The diagram il-
lustrates artificial intelligence
as the overarching field en-
compassing all computational
methods that mimic human
cognitive functions. Machine
learning is a subset of AI that
includes algorithms capable of
learning from data.  Deep
learning, a further subset of
ML, specifically involves neu-
ral networks that are able to
learn more complex patterns in
large volumes of data. Source:
NVIDIA.


https://amturing.acm.org/award_winners/hinton_4791679.cfm
https://amturing.acm.org/award_winners/hinton_4791679.cfm

Figure 3.3: Growth of deep
learning models.
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ments in computational power, the abundance of big data, and im-
provements in algorithmic designs. First, the growth of computational
capabilities, especially the arrival of Graphics Processing Units (GPUs)
and Tensor Processing Units (TPUs) (N. P. Jouppi et al. 2017a), has
significantly sped up the training and inference times of deep learning
models. These hardware improvements have enabled the construction
and training of more complex, deeper networks than what was possi-
ble in earlier years.

Second, the digital revolution has yielded a wealth of big data, of-
fering rich material for deep learning models to learn from and excel
in tasks such as image and speech recognition, language translation,
and game playing. Large, labeled datasets have been key in refining
and successfully deploying deep learning applications in real-world
settings.

Additionally, collaborations and open-source efforts have nurtured
a dynamic community of researchers and practitioners, accelerating
advancements in deep learning techniques. Innovations like deep re-
inforcement learning, transfer learning, and generative artificial intelli-
gence have broadened the scope of what is achievable with deep learn-
ing, opening new possibilities in various sectors, including healthcare,
finance, transportation, and entertainment.

Organizations worldwide recognize deep learning’s transformative
potential and invest heavily in research and development to leverage
its capabilities in providing innovative solutions, optimizing opera-
tions, and creating new business opportunities. As deep learning con-
tinues its upward trajectory, it is set to redefine how we interact with
technology, enhancing convenience, safety, and connectivity in our
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lives.

3.1.3 Applications of Deep Learning

Deep learning is extensively used across numerous industries today,
with its transformative impact evident in various sectors, as illustrated
in Figure 3.4. In finance, it powers stock market prediction, risk as-
sessment, and fraud detection, guiding investment strategies and im-
proving financial decisions. Marketing leverages deep learning for cus-
tomer segmentation and personalization, enabling highly targeted ad-
vertising and content optimization based on consumer behavior anal-
ysis. In manufacturing, it streamlines production processes and en-
hances quality control, allowing companies to boost productivity and
minimize waste. Healthcare benefits from deep learning in diagnosis,
treatment planning, and patient monitoring, potentially saving lives
through improved medical predictions.

EEB Figure 3.4: Deep learning
5 applications, benefits, and im-

\\ plementations across various

Image and Video Recognition

industries including finance,
marketing, manufacturing,
and healthcare. Source: Lee-
way Hertz

Recommendation System

L@
Fraud Detection Medical Diagnosis

Leewayhertz

Beyond these core industries, deep learning enhances everyday
products and services. Netflix uses it to strengthen its recommender
systems, providing users with more personalized recommendations.
Google has significantly improved its Translate service, now handling
over 100 languages with increased accuracy, as highlighted in their
recent advances. Autonomous vehicles from companies like Waymo,
Cruise, and Motional have become a reality through deep learning
in their perception system. Additionally, Amazon employs deep
learning at the edge in Alexa devices for tasks such as keyword
spotting. These applications demonstrate how machine learning often
predicts and processes information with greater accuracy and speed


https://www.leewayhertz.com/what-is-deep-learning/
https://www.leewayhertz.com/what-is-deep-learning/
https://dl.acm.org/doi/abs/10.1145/3543873.3587675
https://cloud.google.com/translate/docs/languages
https://research.google/blog/recent-advances-in-google-translate/
https://motional.com/news/technically-speaking-improving-av-perception-through-transformative-machine-learning
https://towardsdatascience.com/how-amazon-alexa-works-your-guide-to-natural-language-processing-ai-7506004709d3
https://towardsdatascience.com/how-amazon-alexa-works-your-guide-to-natural-language-processing-ai-7506004709d3

3.2. Neural Networks 60

than humans, revolutionizing various aspects of our daily lives.

3.1.4 Relevance to Embedded Al

Embedded Al, the integration of Al algorithms directly into hardware
devices, naturally gains from deep learning capabilities. Combin-
ing deep learning algorithms and embedded systems has laid the
groundwork for intelligent, autonomous devices capable of advanced
on-device data processing and analysis. Deep learning aids in ex-
tracting complex patterns and information from input data, which
is essential in developing smart embedded systems, from household
appliances to industrial machinery. This collaboration ushers in a new
era of intelligent, interconnected devices that can learn and adapt to
user behavior and environmental conditions, optimizing performance
and offering unprecedented convenience and efficiency.

3.2 Neural Networks

Deep learning draws inspiration from the human brain’s neural net-
works to create decision-making patterns. This section digs into the
foundational concepts of deep learning, providing insights into the
more complex topics discussed later in this primer.

Neural networks serve as the foundation of deep learning, inspired
by the biological neural networks in the human brain to process and an-
alyze data hierarchically. Neural networks are composed of basic units
called perceptrons, which are typically organized into layers. Each
layer consists of several perceptrons, and multiple layers are stacked
to form the entire network. The connections between these layers are
defined by sets of weights or parameters that determine how data is
processed as it flows from the input to the output of the network.

Below, we examine the primary components and structures in neural
networks.

3.2.1 Perceptrons

The Perceptron is the basic unit or node that forms the foundation for
more complex structures. It functions by taking multiple inputs, each
representing a feature of the object under analysis, such as the charac-
teristics of a home for predicting its price or the attributes of a song to
forecast its popularity in music streaming services. These inputs are
denoted as z;,z,,...,z,. A perceptron can be configured to perform
either regression or classification tasks. For regression, the actual nu-
merical output y is used. For classification, the output depends on
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whether 3 crosses a certain threshold. If § exceeds this threshold, the
perceptron might output one class (e.g., ‘yes’), and if it does not, an-
other class (e.g., ‘no’).

Figure 3.5 illustrates the fundamental building blocks of a per-
ceptron, which serves as the foundation for more complex neural
networks. A perceptron can be thought of as a miniature decision-
maker, utilizing its weights, bias, and activation function to process
inputs and generate outputs based on learned parameters. This
concept forms the basis for understanding more intricate neural
network architectures, such as multilayer perceptrons. In these
advanced structures, layers of perceptrons work in concert, with each
layer’s output serving as the input for the subsequent layer. This
hierarchical arrangement creates a deep learning model capable of
comprehending and modeling complex, abstract patterns within data.
By stacking these simple units, neural networks gain the ability to
tackle increasingly sophisticated tasks, from image recognition to
natural language processing.
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Each input z; has a corresponding weight w;,;, and the perceptron
simply multiplies each input by its matching weight. This operation is
similar to linear regression, where the intermediate output, z, is com-
puted as the sum of the products of inputs and their weights:

Z = Z(%wzﬂ

To this intermediate calculation, a bias term b is added, allowing the
model to better fit the data by shifting the linear output function up
or down. Thus, the intermediate linear combination computed by the
perceptron including the bias becomes:

z= Z(:ﬁi “w;;) +b

Figure 3.5: Perceptron. Con-
ceived in the 1950s, percep-
trons paved the way for de-
veloping more intricate neu-
ral networks and have been a
fundamental building block in
deep learning. Source: Wiki-
media - Chrislb.



Figure 3.6: Activation func-
tions enable the modeling
of complex non-linear rela-
tionships. Source: Medium -
Sachin Kaushik.
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This basic form of a perceptron can only model linear relationships
between the input and output. Patterns found in nature are often com-
plex and extend beyond linear relationships. To enable the perceptron
to handle non-linear relationships, an activation function is applied to
the linear output z.

y=o(2)

Figure 3.6 illustrates an example where data exhibit a nonlinear pat-
tern that could not be adequately modeled with a linear approach. The
activation function, such as sigmoid, tanh, or ReLU, transforms the
linear input sum into a non-linear output. The primary objective of
this function is to introduce non-linearity into the model, enabling it
to learn and perform more sophisticated tasks. Thus, the final output
of the perceptron, including the activation function, can be expressed
as:

Neural Network without Neural Network with
an Activation Function an Activation Function

3.2.2 Multilayer Perceptrons

Multilayer perceptrons (MLPs) are an evolution of the single-layer per-
ceptron model, featuring multiple layers of nodes connected in a feed-
forward manner. Figure 3.7 provides a visual representation of this
structure. As illustrated in the figure, information in a feedforward
network moves in only one direction - from the input layer on the left,
through the hidden layers in the middle, to the output layer on the
right, without any cycles or loops.

While a single perceptron is limited in its capacity to model complex
patterns, the real strength of neural networks emerges from the assem-
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bly of multiple layers. Each layer consists of numerous perceptrons
working together, allowing the network to capture intricate and non-
linear relationships within the data. With sufficient depth and breadth,
these networks can approximate virtually any function, no matter how
complex.

3.2.3 Training Process

A neural network receives an input, performs a calculation, and pro-
duces a prediction. The prediction is determined by the calculations
performed within the sets of perceptrons found between the input and
output layers. These calculations depend primarily on the input and
the weights. Since you do not have control over the input, the objective
during training is to adjust the weights in such a way that the output
of the network provides the most accurate prediction.

The training process involves several key steps, beginning with the
forward pass, where the existing weights of the network are used to
calculate the output for a given input. This output is then compared
to the true target values to calculate an error, which measures how
well the network’s prediction matches the expected outcome. Follow-
ing this, a backward pass is performed. This involves using the error
to make adjustments to the weights of the network through a process
called backpropagation. This adjustment reduces the error in subse-
quent predictions. The cycle of forward pass, error calculation, and
backward pass is repeated iteratively. This process continues until the
network’s predictions are sufficiently accurate or a predefined number
of iterations is reached, effectively minimizing the loss function used
to measure the error.

Figure 3.7: Multilayer Percep-

tron.
Charlie.

Source:

Wikimedia -



Figure 3.8: Neural networks -
forward and backward propa-
gation. Source: Linkedin
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3.2.3.1 Forward Pass

The forward pass is the initial phase where data moves through the
network from the input to the output layer, as illustrated in Figure 3.8.
At the start of training, the network’s weights are randomly initial-
ized, setting the initial conditions for learning. During the forward
pass, each layer performs specific computations on the input data us-
ing these weights and biases, and the results are then passed to the
subsequent layer. The final output of this phase is the network’s pre-
diction. This prediction is compared to the actual target values present
in the dataset to calculate the loss, which can be thought of as the dif-
ference between the predicted outputs and the target values. The loss
quantifies the network’s performance at this stage, providing a crucial
metric for the subsequent adjustment of weights during the backward
pass.

Forward Propagation
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Backward Propagation

3.2.3.2 Backward Pass (Backpropagation)

After completing the forward pass and computing the loss, which mea-
sures how far the model’s predictions deviate from the actual target
values, the next step is to improve the model’s performance by adjust-
ing the network’s weights. Since we cannot control the inputs to the
model, adjusting the weights becomes our primary method for refin-
ing the model.

We determine how to adjust the weights of our model through a
key algorithm called backpropagation. Backpropagation uses the cal-
culated loss to determine the gradient of each weight. These gradients
describe the direction and magnitude in which the weights should be
adjusted. By tuning the weights based on these gradients, the model


https://www.linkedin.com/pulse/lecture2-unveiling-theoretical-foundations-ai-machine-underdown-phd-oqsuc/
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is better positioned to make predictions that are closer to the actual
target values in the next forward pass.

Grasping these foundational concepts paves the way to understand-
ing more intricate deep learning architectures and techniques, foster-
ing the development of more sophisticated and productive applica-
tions, especially within embedded Al systems.

Video 2 and Video 3 build upon Video 4. They cover gradient de-
scent and backpropagation in neural networks.

1 Important 2: Gradient descent

https:/ /www.youtube.com/watch?v=IHZwWFHWa-w&list=
PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi&index=2

! Important 3: Backpropagation

https:/ /www.youtube.com/watch?v=Ilg3gGewQ5U&list=
PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi&index=3

3.2.4 Model Architectures

Deep learning architectures refer to the various structured approaches
that dictate how neurons and layers are organized and interact in neu-
ral networks. These architectures have evolved to tackle different prob-
lems and data types effectively. This section overviews some well-
known deep learning architectures and their characteristics.

3.2.4.1 Multilayer Perceptrons (MLPs)

MLPs are basic deep learning architectures comprising three layers: an
input layer, one or more hidden layers, and an output layer. These lay-
ers are fully connected, meaning each neuron in a layer is linked to ev-
ery neuron in the preceding and following layers. MLPs can model in-
tricate functions and are used in various tasks, such as regression, clas-
sification, and pattern recognition. Their capacity to learn non-linear
relationships through backpropagation makes them a versatile instru-
ment in the deep learning toolkit.

In embedded Al systems, MLPs can function as compact models
for simpler tasks like sensor data analysis or basic pattern recognition,
where computational resources are limited. Their ability to learn non-
linear relationships with relatively less complexity makes them a suit-
able choice for embedded systems.


https://www.youtube.com/watch?v=IHZwWFHWa-w&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi&index=2
https://www.youtube.com/watch?v=IHZwWFHWa-w&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi&index=2
https://www.youtube.com/watch?v=Ilg3gGewQ5U&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi&index=3
https://www.youtube.com/watch?v=Ilg3gGewQ5U&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi&index=3
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O Caution 2: Multilayer Perceptrons (MLPs)

We’ve just scratched the surface of neural networks. Now, you'll
get to try and apply these concepts in practical examples. In the
provided Colab notebooks, you'll explore:

Predicting house prices: Learn how neural networks
can analyze housing data to estimate property val-

des, O Open in Colab

Image Classification: Discover how to build a network
to understand the famous MNIST handwritten digit

dataset. CO Open in Colab

Real-world medical diagnosis: Use deep learning to
tackle the important task of breast cancer classifica-

CO Open in Colab

tion.

3.2.4.2 Convolutional Neural Networks (CNNs)

CNNs are mainly used in image and video recognition tasks. This ar-
chitecture consists of two main parts: the convolutional base and the
fully connected layers. In the convolutional base, convolutional layers
filter input data to identify features like edges, corners, and textures.
Following each convolutional layer, a pooling layer can be applied to
reduce the spatial dimensions of the data, thereby decreasing compu-
tational load and concentrating the extracted features. Unlike MLPs,
which treat input features as flat, independent entities, CNNs main-
tain the spatial relationships between pixels, making them particularly
effective for image and video data. The extracted features from the con-
volutional base are then passed into the fully connected layers, similar
to those used in MLPs, which perform classification based on the fea-
tures extracted by the convolution layers. CNNs have proven highly
effective in image recognition, object detection, and other computer vi-
sion applications.

Video 4 explains how neural networks work using handwritten digit
recognition as an example application. It also touches on the math
underlying neural nets.


https://colab.research.google.com/github/Mjrovai/UNIFEI-IESTI01-TinyML-2022.1/blob/main/00_Curse_Folder/1_Fundamentals/Class_07/TF_Boston_Housing_Regression.ipynb
https://colab.research.google.com/github/Mjrovai/UNIFEI-IESTI01-TinyML-2022.1/blob/main/00_Curse_Folder/1_Fundamentals/Class_09/TF_MNIST_Classification_v2.ipynb
https://colab.research.google.com/github/Mjrovai/UNIFEI-IESTI01-TinyML-2022.1/blob/main/00_Curse_Folder/1_Fundamentals/Class_13/docs/WDBC_Project/Breast_Cancer_Classification.ipynb
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! Important 4: MLP & CNN Networks

https:/ /www.youtube.com/embed /aircAruvnKk?si=
ZRj8jf4yx7ZMe8EK

CNN:s are crucial for image and video recognition tasks, where real-
time processing is often needed. They can be optimized for embedded
systems using techniques like quantization and pruning to minimize
memory usage and computational demands, enabling efficient object
detection and facial recognition functionalities in devices with limited
computational resources.

O Caution 3: Convolutional Neural Networks (CNNs)

We discussed that CNNs excel at identifying image features,
making them ideal for tasks like object classification. Now, you'll
get to put this knowledge into action! This Colab notebook fo-
cuses on building a CNN to classify images from the CIFAR-10
dataset, which includes objects like airplanes, cars, and animals.
You'll learn about the key differences between CIFAR-10 and the
MNIST dataset we explored earlier and how these differences in-
fluence model choice. By the end of this notebook, you'll have a
grasp of CNNs for image recognition.

CO Open in Colab

3.2.4.3 Recurrent Neural Networks (RNNSs)

RNNSs are suitable for sequential data analysis, like time series fore-
casting and natural language processing. In this architecture, connec-
tions between nodes form a directed graph along a temporal sequence,
allowing information to be carried across sequences through hidden
state vectors. Variants of RNNs include Long Short-Term Memory
(LSTM) and Gated Recurrent Units (GRU), designed to capture longer
dependencies in sequence data.

These networks can be used in voice recognition systems, predictive
maintenance, or Iol' devices where sequential data patterns are com-
mon. Optimizations specific to embedded platforms can assist in man-
aging their typically high computational and memory requirements.


https://www.youtube.com/embed/aircAruvnKk?si=ZRj8jf4yx7ZMe8EK
https://www.youtube.com/embed/aircAruvnKk?si=ZRj8jf4yx7ZMe8EK
https://colab.research.google.com/github/Mjrovai/UNIFEI-IESTI01-TinyML-2022.1/blob/main/00_Curse_Folder/1_Fundamentals/Class_11/CNN_Cifar_10.ipynb
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3.2.4.4 Generative Adversarial Networks (GANSs)

GAN: s consist of two networks, a generator and a discriminator, trained
simultaneously through adversarial training (Goodfellow et al. 2020).
The generator produces data that tries to mimic the real data distribu-
tion, while the discriminator distinguishes between real and generated
data. GANs are widely used in image generation, style transfer, and
data augmentation.

In embedded settings, GANs could be used for on-device data aug-
mentation to improve the training of models directly on the embedded
device, enabling continual learning and adaptation to new data with-
out the need for cloud computing resources.

3.2.4.5 Autoencoders

Autoencoders are neural networks for data compression and noise re-
duction (Bank, Koenigstein, and Giryes 2023). They are structured to
encode input data into a lower-dimensional representation and then
decode it back to its original form. Variants like Variational Autoen-
coders (VAEs) introduce probabilistic layers that allow for generative
properties, finding applications in image generation and anomaly de-
tection.

Using autoencoders can help in efficient data transmission and stor-
age, improving the overall performance of embedded systems with
limited computational and memory resources.

3.2.4.6 Transformer Networks

Transformer networks have emerged as a powerful architecture, espe-
cially in natural language processing (Vaswani et al. 2017). These net-
works use self-attention mechanisms to weigh the influence of different
input words on each output word, enabling parallel computation and
capturing intricate patterns in data. Transformer networks have led to
state-of-the-art results in tasks like language translation, summariza-
tion, and text generation.

These networks can be optimized to perform language-related tasks
directly on the device. For example, transformers can be used in em-
bedded systems for real-time translation services or voice-assisted in-
terfaces, where latency and computational efficiency are crucial. Tech-
niques such as model distillation can be employed to deploy these net-
works on embedded devices with limited resources.

These architectures serve specific purposes and excel in different do-
mains, offering a rich toolkit for addressing diverse problems in em-
bedded Al systems. Understanding the nuances of these architectures
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is crucial in designing effective and efficient deep learning models for
various applications.

3.2.5 Traditional ML vs Deep Learning

Deep learning extends traditional machine learning by utilizing neural
networks to discern patterns in data. In contrast, traditional machine
learning relies on a set of established algorithms such as decision trees,
k-nearest neighbors, and support vector machines, but does not involve
neural networks. Figure 3.9 provides a visual comparison of Machine
Learning and Deep Learning, highlighting their key differences in ap-
proach and capabilities.

Machine Learning 2
O — ;ntﬁ T s Yk die it
Input . sace
Feature extraction Classification

Traditional machine learning uses hand-crafted features, which is tedious and costly to develop.

Deep Learning

Output
Input

Neural Networks
Deep learning learns hierarchical representation from the data itself, and scales with more data.

As shown in the figure, deep learning models can process raw data
directly and automatically extract relevant features, while traditional
machine learning often requires manual feature engineering. The fig-
ure also illustrates how deep learning models can handle more com-
plex tasks and larger datasets compared to traditional machine learn-
ing approaches.

To further highlight the differences, Table 3.1 provides a more de-
tailed comparison of the contrasting characteristics between traditional
ML and deep learning. This table complements the visual representa-
tion in Figure 3.9 by offering specific points of comparison across vari-
ous aspects of these two approaches.

Figure 3.9: Comparing Ma-
chine Learning and Deep
Learning. Source: Medium


https://aoyilmaz.medium.com/understanding-the-differences-between-deep-learning-and-machine-learning-eb41d64f1732
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Table 3.1: Comparison of traditional machine learning and deep learn-

ing.
Aspect Traditional ML Deep Learning
Data Re- Low to Moderate High (requires large
quirements (efficient with smaller datasets for nuanced
datasets) learning)
Model Moderate (suitable for High (detects intricate
Complexity ~ well-defined problems)  patterns, suited for
complex tasks)
Computational Low to Moderate High (demands
Resources (cost-effective, less substantial
resource-intensive) computational power and
resources)
Deployment  Fast (quicker training Slow (prolonged training
Speed and deployment cycles)  times, esp. with larger

datasets)

Low (complex layered
structures, “black box”
nature)

Complex (requires more
efforts in maintenance
and updates)

Interpretability High (clear insights into

decision pathways)
Maintenance Easier (simple to update
and maintain)

3.2.6 Choosing Traditional ML vs. DL
3.2.6.1 Data Availability and Volume

Amount of Data: Traditional machine learning algorithms, such as de-
cision trees or Naive Bayes, are often more suitable when data availabil-
ity is limited. They offer robust predictions even with smaller datasets.
This is particularly true in medical diagnostics for disease prediction
and customer segmentation in marketing.

Data Diversity and Quality: Traditional machine learning algo-
rithms often work well with structured data (the input to the model is
a set of features, ideally independent of each other) but may require
significant preprocessing effort (i.e., feature engineering). On the
other hand, deep learning takes the approach of automatically per-
forming feature engineering as part of the model architecture. This
approach enables the construction of end-to-end models capable of
directly mapping from unstructured input data (such as text, audio,
and images) to the desired output without relying on simplistic
heuristics that have limited effectiveness. However, this results in
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larger models demanding more data and computational resources.
In noisy data, the necessity for larger datasets is further emphasized
when utilizing Deep Learning.

3.2.6.2 Complexity of the Problem

Problem Granularity: Problems that are simple to moderately com-
plex, which may involve linear or polynomial relationships between
variables, often find a better fit with traditional machine learning meth-
ods.

Hierarchical Feature Representation: Deep learning models are ex-
cellent in tasks that require hierarchical feature representation, such as
image and speech recognition. However, not all problems require this
complexity, and traditional machine learning algorithms may some-
times offer simpler and equally effective solutions.

3.2.6.3 Hardware and Computational Resources

Resource Constraints: The availability of computational resources of-
ten influences the choice between traditional ML and deep learning.
The former is generally less resource-intensive and thus preferable in
environments with hardware limitations or budget constraints.

Scalability and Speed: Traditional machine learning algorithms,
like support vector machines (SVM), often allow for faster training
times and easier scalability, which is particularly beneficial in projects
with tight timelines and growing data volumes.

3.2.6.4 Regulatory Compliance

Regulatory compliance is crucial in various industries, requiring ad-
herence to guidelines and best practices such as the General Data Pro-
tection Regulation (GDPR) in the EU. Traditional ML models, due to
their inherent interpretability, often align better with these regulations,
especially in sectors like finance and healthcare.

3.2.6.5 Interpretability

Understanding the decision-making process is easier with traditional
machine learning techniques than deep learning models, which func-
tion as “black boxes,” making it challenging to trace decision pathways.
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3.2.7 Making an Informed Choice

Given the constraints of embedded Al systems, understanding the
differences between traditional ML techniques and deep learning
becomes essential. Both avenues offer unique advantages, and their
distinct characteristics often dictate the choice of one over the other in
different scenarios.

Despite this, deep learning has steadily outperformed traditional
machine learning methods in several key areas due to abundant data,
computational advancements, and proven effectiveness in complex
tasks. Here are some specific reasons why we focus on deep learning:

1. Superior Performance in Complex Tasks: Deep learning mod-
els, particularly deep neural networks, excel in tasks where the rela-
tionships between data points are incredibly intricate. Tasks like im-
age and speech recognition, language translation, and playing complex
games like Go and Chess have seen significant advancements primar-
ily through deep learning algorithms.

2. Efficient Handling of Unstructured Data: Unlike traditional ma-
chine learning methods, deep learning can more effectively process
unstructured data. This is crucial in today’s data landscape, where the
vast majority of data, such as text, images, and videos, is unstructured.

3. Leveraging Big Data: With the availability of big data, deep learn-
ing models can learn and improve continually. These models excel at
utilizing large datasets to improve their predictive accuracy, a limita-
tion in traditional machine-learning approaches.

4. Hardware Advancements and Parallel Computing: The advent
of powerful GPUs and the availability of cloud computing platforms
have enabled the rapid training of deep learning models. These
advancements have addressed one of deep learning’s significant
challenges: the need for substantial computational resources.

5. Dynamic Adaptability and Continuous Learning: Deep learning
models can dynamically adapt to new information or data. They can
be trained to generalize their learning to new, unseen data, crucial in
rapidly evolving fields like autonomous driving or real-time language
translation.

While deep learning has gained significant traction, it’s essential to
understand that traditional machine learning is still relevant. As we
dive deeper into the intricacies of deep learning, we will also highlight
situations where traditional machine learning methods may be more
appropriate due to their simplicity, efficiency, and interpretability. By
focusing on deep learning in this text, we aim to equip readers with
the knowledge and tools to tackle modern, complex problems across
various domains while also providing insights into the comparative
advantages and appropriate application scenarios for deep learning



CHAPTER 3. DL PRIMER 73

and traditional machine learning techniques.

3.3 Conclusion

Deep learning has become a potent set of techniques for addressing in-
tricate pattern recognition and prediction challenges. Starting with an
overview, we outlined the fundamental concepts and principles gov-
erning deep learning, laying the groundwork for more advanced stud-
ies.

Central to deep learning, we explored the basic ideas of neural net-
works, powerful computational models inspired by the human brain’s
interconnected neuron structure. This exploration allowed us to ap-
preciate neural networks’ capabilities and potential in creating sophis-
ticated algorithms capable of learning and adapting from data.

Understanding the role of libraries and frameworks was a key part
of our discussion. We offered insights into the tools that can facilitate
developing and deploying deep learning models. These resources ease
the implementation of neural networks and open avenues for innova-
tion and optimization.

Next, we tackled the challenges one might face when embedding
deep learning algorithms within embedded systems, providing a crit-
ical perspective on the complexities and considerations of bringing Al
to edge devices.

Furthermore, we examined deep learning’s limitations. Through
discussions, we unraveled the challenges faced in deep learning ap-
plications and outlined scenarios where traditional machine learning
might outperform deep learning. These sections are crucial for foster-
ing a balanced view of deep learning’s capabilities and limitations.

In this primer, we have equipped you with the knowledge to make
informed choices between deploying traditional machine learning or
deep learning techniques, depending on the unique demands and con-
straints of a specific problem.

As we conclude this chapter, we hope you are now well-equipped
with the basic “language” of deep learning and prepared to go deeper
into the subsequent chapters with a solid understanding and critical
perspective. The journey ahead is filled with exciting opportunities
and challenges in embedding AI within systems.

3.4 Resources

Here is a curated list of resources to support students and instructors
in their learning and teaching journeys. We are continuously working
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on expanding this collection and will be adding new exercises soon.

1 Slides

These slides are a valuable tool for instructors to deliver lectures
and for students to review the material at their own pace. We
encourage students and instructors to leverage these slides to
improve their understanding and facilitate effective knowledge
transfer.

e Past, Present, and Future of ML.

¢ Thinking About Loss.

¢ Minimizing Loss.

e First Neural Network.

* Understanding Neurons.

e Intro to CLassification.

¢ Training, Validation, and Test Data.

¢ Intro to Convolutions.

! Videos
e Video 4
e Video 2
* Video 3

O Exercises

To reinforce the concepts covered in this chapter, we have curated
a set of exercises that challenge students to apply their knowl-
edge and deepen their understanding.

e Exercise 2

e Exercise 3


https://docs.google.com/presentation/d/16ensKAKBG8DOUHF4f5thTJklVGTadxjm3kPkdoPyabI/edit#slide=id.g94db9f9f78_0_2
https://docs.google.com/presentation/d/1X92JqVkUY7k6yJXQcT2u83dpdrx5UzGFAJkkDMDfKe0/edit#slide=id.g94db9f9f78_0_2
https://docs.google.com/presentation/d/1x3xbZHo4VtaZgoXfueCbOGGXuWRYj0nOsKwAAoGsrD0/edit#slide=id.g94db9f9f78_0_2
https://docs.google.com/presentation/d/1zQwhTwF_plXBPQLxluahpzoQg-VdMyJbctaJxSUncag/edit?usp=drive_link
https://docs.google.com/presentation/d/1jXCAC6IT5f9XFKZbfhJ4p2D5URVTYqgAnkcQR4ALhSk/edit?usp=drive_link&resourcekey=0-K228bxVdwO2w3kr0daV2cw
https://docs.google.com/presentation/d/1VtWV9LAVLJ0uAkhFMbDJFjsUH6IvBDnPde4lR1cD2mo/edit?usp=drive_link
https://docs.google.com/presentation/d/1G56D0-qG9YWnzQQeje9LMpcLSotMgBCiMyfj53yz7lY/edit?usp=drive_link
https://docs.google.com/presentation/d/1hQDabWqaKUWRb60Cze-MhAyeUUVyNgyTUMBpLnqhtvc/edit?resourcekey=0-uHZoNwsbjeY3EIMD3fYAfg#slide=id.g94db9f9f78_0_2
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Chapter 4

Al Workflow
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The ML workflow is a structured approach that guides professionals
and researchers through developing, deploying, and maintaining ML
models. This workflow is generally divided into several crucial stages,
each contributing to the effective development of intelligent systems.

In this chapter, we will explore the machine learning workflow, set-
ting the stage for subsequent chapters that go deeper into the specifics.
This chapter focuses only presenting a high-level overview of the steps
involved in the ML workflow.

Figure 4.1: DALL-E 3 Prompt:
Create a rectangular illustration
of a stylized flowchart represent-
ing the Al workflow/pipeline.
From left to right, depict the
stages as follows: ‘Data Collec-
tion” with a database icon, ‘Data
Preprocessing” with a filter icon,
‘Model Design’ with a brain icon,
Training’ with a weight icon,
‘Evaluation” with a checkmark,
and ‘Deployment’ with a rocket.
Connect each stage with arrows
to guide the viewer horizontally
through the Al processes, empha-
sizing these steps’ sequential and
interconnected nature.



Figure 4.2: Multi-step design
methodology for the develop-
ment of a machine learning
model. Commonly referred to
as the machine learning lifecy-
cle
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@ Learning Objectives

¢ Understand the ML workflow and gain insights into the
structured approach and stages of developing, deploying,
and maintaining machine learning models.

e Learn about the unique challenges and distinctions be-
tween workflows for Traditional machine learning and em-
bedded Al

® Appreciate the roles in ML projects and understand their
responsibilities and significance.

¢ Understanding the importance, applications, and con-
siderations for implementing ML models in resource-
constrained environments.

¢ Gain awareness about the ethical and legal aspects that
must be considered and adhered to in ML and embedded
Al projects.

¢ Establish a basic understanding of ML workflows and roles
to be well-prepared for deeper exploration in the following
chapters.

4.1 Overview
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Figure 4.2 illustrates the systematic workflow required for develop-
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ing a successful machine learning model. This end-to-end process,
commonly referred to as the machine learning lifecycle, enables you
to build, deploy, and maintain models effectively. It typically involves
the following key steps:

1. Problem Definition - Start by clearly articulating the specific
problem you want to solve. This focuses on your efforts during
data collection and model building.

2. Data Collection and Preparation: Gather relevant, high-quality
training data that captures all aspects of the problem. Clean and
preprocess the data to prepare it for modeling.

3. Model Selection and Training: Choose a machine learning algo-
rithm suited to your problem type and data. Consider the pros
and cons of different approaches. Feed the prepared data into
the model to train it. Training time varies based on data size and
model complexity.

4. Model Evaluation: Test the trained model on new unseen data
to measure its predictive accuracy. Identify any limitations.

5. Model Deployment: Integrate the validated model into applica-
tions or systems to start operationalization.

6. Monitor and Maintain: Track model performance in production.
Retrain periodically on new data to keep it current.

Following this structured ML workflow helps guide you through the
key phases of development. It ensures you build effective and robust
models ready for real-world deployment, resulting in higher-quality
models that solve your business needs.

The ML workflow is iterative, requiring ongoing monitoring and po-
tential adjustments. Additional considerations include:

* Version Control: Track code and data changes to reproduce re-
sults and revert to earlier versions if needed.

¢ Documentation: Maintain detailed documentation for workflow
understanding and reproduction.

¢ Testing: Rigorously test the workflow to ensure its functionality.

® Security: Safeguard your workflow and data when deploying
models in production settings.

4.2 Traditional vs. Embedded Al

The ML workflow is a universal guide applicable across various plat-
forms, including cloud-based solutions, edge computing, and TinyML.
However, the workflow for Embedded Al introduces unique complex-
ities and challenges, making it a captivating domain and paving the



Figure 4.3: Comparing tradi-
tional Machine Learning and
Deep Learning. Source: BBN
Times

Figure 4.4: Embedded Al ap-
plications. Source: Rinf.tech
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way for remarkable innovations. Figure 4.3 illustrates the differences
between Machine Learning and Deep Learning.

Traditional machine learning
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Figure 4.4 showcases the uses of embedded ai in various industries.
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4.2.1 Resource Optimization

¢ Traditional ML Workflow: This workflow prioritizes model
accuracy and performance, often leveraging abundant computa-
tional resources in cloud or data center environments.

¢ Embedded AI Workflow: Given embedded systems’ resource
constraints, this workflow requires careful planning to optimize


https://www.bbntimes.com/technology/to-leverage-deep-learning-you-must-know-this-first
https://www.bbntimes.com/technology/to-leverage-deep-learning-you-must-know-this-first
https://www.rinf.tech/what-is-embedded-intelligence-and-how-can-tech-leaders-embrace-it/
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model size and computational demands. Techniques like model
quantization and pruning are crucial.

4.2.2 Real-time Processing

¢ Traditional ML Workflow: Less emphasis on real-time process-
ing, often relying on batch data processing.

¢ Embedded AI Workflow: Prioritizes real-time data processing,
making low latency and quick execution essential, especially in
applications like autonomous vehicles and industrial automa-
tion.

4.2.3 Data Management and Privacy

¢ Traditional ML Workflow: Processes data in centralized loca-
tions, often necessitating extensive data transfer and focusing on
data security during transit and storage.

¢ Embedded AI Workflow: This workflow leverages edge comput-
ing to process data closer to its source, reducing data transmis-
sion and enhancing privacy through data localization.

4.2.4 Hardware-Software Integration

e Traditional ML Workflow: Typically operates on general-
purpose hardware, with software development occurring
independently.

* Embedded AI Workflow: This workflow involves a more inte-
grated approach to hardware and software development, often
incorporating custom chips or hardware accelerators to achieve
optimal performance.

4.3 Roles & Responsibilities

Creating an ML solution, especially for embedded Al, is a multidisci-
plinary effort involving various specialists. Unlike traditional software
development, building an ML solution demands a multidisciplinary
approach due to the experimental nature of model development and
the resource-intensive requirements of training and deploying these
models.

There is a pronounced need for roles focusing on data for the success
of machine learning pipelines. Data scientists and data engineers han-
dle data collection, build data pipelines, and ensure data quality. Since
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the nature of machine learning models depends on the data they con-
sume, the models are unique and vary with different applications, ne-
cessitating extensive experimentation. Machine learning researchers
and engineers drive this experimental phase through continuous test-
ing, validation, and iteration to achieve optimal performance.

The deployment phase often requires specialized hardware and in-
frastructure, as machine learning models can be resource-intensive,
demanding high computational power and efficient resource manage-
ment. This necessitates collaboration with hardware engineers to en-
sure that the infrastructure can support the computational demands
of model training and inference.

As models make decisions that can impact individuals and society,
ethical and legal aspects of machine learning are becoming increas-
ingly important. Ethicists and legal advisors are needed to ensure com-
pliance with ethical standards and legal regulations.

Understanding the various roles involved in an ML project is crucial
for its successful completion. Table 4.1 provides a general overview
of these typical roles, although it’s important to note that the lines be-
tween them can sometimes blur. Let’s examine this breakdown:

Table 4.1: Roles and responsibilities of people involved in MLOps.

Role

Responsibilities

Project Manager
Domain Experts
Data Scientists

Machine Learning
Engineers

Data Engineers
Embedded
Systems Engineers
Software
Developers
Hardware
Engineers

UI/UX Designers
QA Engineers
Ethicists and Legal
Adpvisors

Oversees the project, ensuring timelines and
milestones are met.

Offer domain-specific insights to define project
requirements.

Specialize in data analysis and model
development.

Focus on model development and deployment.

Manage data pipelines.
Integrate ML models into embedded systems.

Develop software components for Al system
integration.

Design and optimize hardware for the
embedded Al system.

Focus on user-centric design.

Ensure the system meets quality standards.
Consult on ethical and legal compliance.
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Role Responsibilities

Operations and Monitor and maintain the deployed system.
Maintenance

Personnel

Security Specialists ~Ensure system security.

This holistic view facilitates seamless collaboration and nurtures an
environment ripe for innovation and breakthroughs. As we proceed
through the upcoming chapters, we will explore each role’s essence
and expertise and foster a deeper understanding of the complexities
involved in AI projects. For a more detailed discussion of the specific
tools and techniques these roles use, as well as an in-depth exploration
of their responsibilities, refer to Section 13.5.

4.4 Conclusion

This chapter has laid the foundation for understanding the machine
learning workflow, a structured approach crucial for the development,
deployment, and maintenance of ML models. We explored the unique
challenges faced in ML workflows, where resource optimization, real-
time processing, data management, and hardware-software integra-
tion are paramount. These distinctions underscore the importance of
tailoring workflows to meet the specific demands of the application
environment.

Moreover, we emphasized the significance of multidisciplinary col-
laboration in ML projects. By examining the diverse roles involved,
from data scientists to software engineers, we gained an overview of
the teamwork necessary to navigate the experimental and resource-
intensive nature of ML development. This understanding is crucial
for fostering effective communication and collaboration across differ-
ent domains of expertise.

As we move forward to more detailed discussions in subsequent
chapters, this high-level overview equips us with a holistic perspective
on the ML workflow and the various roles involved. This foundation
will prove important as we dive into specific aspects of machine learn-
ing, which will allow us to contextualize advanced concepts within the
broader framework of ML development and deployment.

4.5 Resources

Here is a curated list of resources to support students and instructors
in their learning and teaching journeys. We are continuously working
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on expanding this collection and will add new exercises soon.

1 Slides

These slides are a valuable tool for instructors to deliver lectures
and for students to review the material at their own pace. We
encourage students and instructors to leverage these slides to
improve their understanding and facilitate effective knowledge
transfer.

e ML Workflow.
¢ ML Lifecycle.

! Videos

* Coming soon.

O Exercises

To reinforce the concepts covered in this chapter, we have curated
a set of exercises that challenge students to apply their knowl-
edge and deepen their understanding.

* Coming soon.


https://docs.google.com/presentation/d/1rWXLegepZjpJHonYLKcOJYfOIunmOBnrg0SGhy1pZ_I/edit
https://docs.google.com/presentation/d/1zOxDX-tKlY8t9KmCYek0E-mZA9ENPjW9ymVyFV17DmE/edit
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Chapter 5

Data Engineering

Data is the lifeblood of Al systems. Without good data, even the most
advanced machine-learning algorithms will not succeed. However,
TinyML models operate on devices with limited processing power and
memory. This section explores the intricacies of building high-quality
datasets to fuel our Al models. Data engineering involves collecting,
storing, processing, and managing data to train machine learning mod-
els.

Figure 5.1: DALL-E 3 Prompt:
Create a rectangular illustration
visualizing the concept of data en-
gineering. Include elements such
as raw data sources, data pro-
cessing pipelines, storage systems,
and refined datasets. Show how
raw data is transformed through
cleaning, processing, and storage
to become wvaluable information
that can be analyzed and used for
decision-making.
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@ Learning Objectives

* Understand the importance of clearly defining the prob-
lem statement and objectives when embarking on an ML
project.

* Recognize various data sourcing techniques, such as web
scraping, crowdsourcing, and synthetic data generation,
along with their advantages and limitations.

* Appreciate the need for thoughtful data labeling, using
manual or Al-assisted approaches, to create high-quality
training datasets.

* Briefly learn different methods for storing and managing
data, such as databases, data warehouses, and data lakes.

e Comprehend the role of transparency through metadata
and dataset documentation and tracking data provenance
to facilitate ethics, auditing, and reproducibility.

* Understand how licensing protocols govern legal data ac-
cess and usage, necessitating careful compliance.

* Recognize key challenges in data engineering, including
privacy risks, representation gaps, legal restrictions around
data access, and balancing competing priorities.

5.1 Overview

Imagine a world where Al can diagnose diseases with unprecedented
accuracy, but only if the data used to train it is unbiased and reliable.
This is where data engineering comes in. While over 90% of the world’s
data has been created in the past two decades, this vast amount of infor-
mation is only helpful for building effective Al models with proper pro-
cessing and preparation. Data engineering bridges this gap by trans-
forming raw data into a high-quality format that fuels Al innovation.
In today’s data-driven world, protecting user privacy is paramount.
Whether mandated by law or driven by user concerns, anonymization
techniques like differential privacy and aggregation are vital in mitigat-
ing privacy risks. However, careful implementation is crucial to ensure
these methods don’t compromise data utility. Dataset creators face
complex privacy and representation challenges when building high-
quality training data, especially for sensitive domains like healthcare.
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Legally, creators may need to remove direct identifiers like names and
ages. Even without legal obligations, removing such information can
help build user trust. However, excessive anonymization can compro-
mise dataset utility. Techniques like differential privacy!, aggregation,
and reducing detail provide alternatives to balance privacy and utility
but have downsides. Creators must strike a thoughtful balance based
on the use case.

While privacy is paramount, ensuring fair and robust Al models re-
quires addressing representation gaps in the data. Itis crucial yet insuf-
ficient to ensure diversity across individual variables like gender, race,
and accent. These combinations, sometimes called higher-order gaps,
can significantly impact model performance. For example, a medical
dataset could have balanced gender, age, and diagnosis data individu-
ally, but it lacks enough cases to capture older women with a specific
condition. Such higher-order gaps are not immediately obvious but
can critically impact model performance.

Creating useful, ethical training data requires holistic consid-
eration of privacy risks and representation gaps. Elusive perfect
solutions necessitate conscientious data engineering practices like
anonymization, aggregation, under-sampling of overrepresented
groups, and synthesized data generation to balance competing needs.
This facilitates models that are both accurate and socially responsible.
Cross-functional collaboration and external audits can also strengthen
training data. The challenges are multifaceted but surmountable with
thoughtful effort.

We begin by discussing data collection: Where do we source data,
and how do we gather it? Options range from scraping the web, access-
ing APlIs, and utilizing sensors and Iol' devices to conducting surveys
and gathering user input. These methods reflect real-world practices.
Next, we dive into data labeling, including considerations for human
involvement. We’ll discuss the trade-offs and limitations of human
labeling and explore emerging methods for automated labeling. Fol-
lowing that, we’ll address data cleaning and preprocessing, a crucial
yet frequently undervalued step in preparing raw data for Al model
training. Data augmentation comes next, a strategy for enhancing lim-
ited datasets by generating synthetic samples. This is particularly per-
tinent for embedded systems, as many use cases need extensive data
repositories readily available for curation. Synthetic data generation
emerges as a viable alternative with advantages and disadvantages.
We'll also touch upon dataset versioning, emphasizing the importance
of tracking data modifications over time. Data is ever-evolving; hence,
it’s imperative to devise strategies for managing and storing expansive
datasets. By the end of this section, you'll possess a comprehensive


https://blog.google/technology/health/healthcare-ai-systems-put-people-center/

Figure 5.2: Data cascades: com-
pounded costs. Source: Sam-
basivan et al. (2021a).
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understanding of the entire data pipeline, from collection to storage,
essential for operationalizing Al systems. Let’s embark on this jour-
ney!

5.2 Problem Definition

In many machine learning domains, sophisticated algorithms take cen-
ter stage, while the fundamental importance of data quality is often
overlooked. This neglect gives rise to “Data Cascades” by Sambasivan
et al. (2021a)—events where lapses in data quality compound, lead-
ing to negative downstream consequences such as flawed predictions,
project terminations, and even potential harm to communities.

Figure 5.2 illustrates these potential data pitfalls at every stage and
how they influence the entire process down the line. The influence of
data collection errors is especially pronounced. As depicted in the fig-
ure, any lapses in this initial stage will become apparent at later stages
(in model evaluation and deployment) and might lead to costly con-
sequences, such as abandoning the entire model and restarting anew.
Therefore, investing in data engineering techniques from the onset will
help us detect errors early, mitigating the cascading effects illustrated
in the figure.

Interacting with physical world brittleness
@ Iadequate application-domain expertise
@ Conflicling reward systems

@ Poor

w»  Lmpacts of cascades

— Abandon / re-start process

Despite many ML professionals recognizing the importance of data,
numerous practitioners report facing these cascades. This highlights
a systemic issue: while the allure of developing advanced models re-
mains, data often needs to be more appreciated.

Keyword Spotting (KWS) provides an excellent example of TinyML
in action, as illustrated in Figure 5.3. This technology is critical for
voice-enabled interfaces on endpoint devices such as smartphones.
Typically functioning as lightweight wake-word engines, KWS sys-
tems are consistently active, listening for a specific phrase to trigger
further actions. As depicted in the figure, when we say “OK, Google”
or “Alexa,” this initiates a process on a microcontroller embedded
within the device. Despite their limited resources, these microcon-
trollers play an important role in enabling seamless voice interactions


https://research.google/pubs/pub49953/
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with devices, often operating in environments with high ambient
noise. The uniqueness of the wake word, as shown in the figure, helps
minimize false positives, ensuring that the system is not triggered
inadvertently.

IN[SEM
-

Hi, VJ!

dim the lights.

It is important to appreciate that these keyword-spotting technolo-
gies are not isolated; they integrate seamlessly into larger systems, pro-
cessing signals continuously while managing low power consumption.
These systems extend beyond simple keyword recognition, evolving
to facilitate diverse sound detections, such as glass breaking. This evo-
lution is geared towards creating intelligent devices capable of under-
standing and responding to vocal commands, heralding a future where
even household appliances can be controlled through voice interac-
tions.

Building a reliable KWS model is a complex task. It demands a deep
understanding of the deployment scenario, encompassing where and
how these devices will operate. For instance, a KWS model’s effective-
ness is notjust about recognizing a word; it’s about discerning itamong
various accents and background noises, whether in a bustling cafe or
amid the blaring sound of a television in a living room or a kitchen
where these devices are commonly found. It's about ensuring that a
whispered “Alexa” in the dead of night or a shouted “OK Google” in
a noisy marketplace are recognized with equal precision.

Moreover, many current KWS voice assistants support a limited
number of languages, leaving a substantial portion of the world’s
linguistic diversity unrepresented. This limitation is partly due to the
difficulty in gathering and monetizing data for languages spoken by

Figure 5.3: Keyword Spot-
ting example: interacting with
Alexa. Source: Amazon.
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smaller populations. The long-tail distribution of languages implies
that many languages have limited data, making the development of
supportive technologies challenging.

This level of accuracy and robustness hinges on the availability and
quality of data, the ability to label the data correctly, and the trans-
parency of the data for the end user before it is used to train the model.
However, it all begins with clearly understanding the problem state-
ment or definition.

Generally, in ML, problem definition has a few key steps:

1. Identifying the problem definition clearly
. Setting clear objectives

. Establishing success benchmark

2

3

4. Understanding end-user engagement/use

5. Understanding the constraints and limitations of deployment
6

. Followed by finally doing the data collection.

A solid project foundation is essential for its trajectory and eventual
success. Central to this foundation is first identifying a clear problem,
such as ensuring that voice commands in voice assistance systems are
recognized consistently across varying environments. Clear objectives,
like creating representative datasets for diverse scenarios, provide a
unified direction. Benchmarks, such as system accuracy in keyword
detection, offer measurable outcomes to gauge progress. Engaging
with stakeholders, from end-users to investors, provides invaluable in-
sights and ensures alignment with market needs. Additionally, under-
standing platform constraints is important when exploring areas like
voice assistance. Embedded systems, such as microcontrollers, come
with inherent processing power, memory, and energy efficiency limi-
tations. Recognizing these limitations ensures that functionalities, like
keyword detection, are tailored to operate optimally, balancing perfor-
mance with resource conservation.

In this context, using KWS as an example, we can break each of the
steps out as follows:

1. Identifying the Problem: At its core, KWS detects specific key-
words amidst ambient sounds and other spoken words. The pri-
mary problem is to design a system that can recognize these key-
words with high accuracy, low latency, and minimal false posi-
tives or negatives, especially when deployed on devices with lim-
ited computational resources.
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2. Setting Clear Objectives: The objectives for a KWS system might
include:

* Achieving a specific accuracy rate (e.g., 98% accuracy in key-
word detection).

¢ Ensuring low latency (e.g., keyword detection and response
within 200 milliseconds).

¢ Minimizing power consumption to extend battery life on
embedded devices.

* Ensuring the model’s size is optimized for the available
memory on the device.

3. Benchmarks for Success: Establish clear metrics to measure the
success of the KWS system. This could include:

* True Positive Rate: The percentage of correctly identified
keywords.

¢ False Positive Rate: The percentage of non-keywords incor-
rectly identified as keywords.

* Response Time: The time taken from keyword utterance to
system response.

e Power Consumption: Average power used during keyword
detection.

4. Stakeholder Engagement and Understanding: Engage with
stakeholders, which include device manufacturers, hardware
and software developers, and end-users. Understand their
needs, capabilities, and constraints. For instance:

* Device manufacturers might prioritize low power consump-
tion.

* Software developers might emphasize ease of integration.

¢ End-users would prioritize accuracy and responsiveness.

5. Understanding the Constraints and Limitations of Embedded
Systems: Embedded devices come with their own set of chal-
lenges:

* Memory Limitations: KWS models must be lightweight to
fit within the memory constraints of embedded devices.
Typically, KWS models need to be as small as 16KB to fit in
the always-on island of the SoC. Moreover, this is just the
model size. Additional application code for preprocessing
may also need to fit within the memory constraints.

* Processing Power: The computational capabilities of embed-
ded devices are limited (a few hundred MHz of clock speed),
so the KWS model must be optimized for efficiency.
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* Power Consumption: Since many embedded devices are
battery-powered, the KWS system must be power-efficient.

¢ Environmental Challenges: Devices might be deployed in
various environments, from quiet bedrooms to noisy indus-
trial settings. The KWS system must be robust enough to
function effectively across these scenarios.

6. Data Collection and Analysis: For a KWS system, the quality
and diversity of data are paramount. Considerations might in-
clude:

* Variety of Accents: Collect data from speakers with various
accents to ensure wide-ranging recognition.

* Background Noises: Include data samples with different
ambient noises to train the model for real-world scenarios.

¢ Keyword Variations: People might either pronounce key-
words differently or have slight variations in the wake word
itself. Ensure the dataset captures these nuances.

7. Iterative Feedback and Refinement: Once a prototype KWS sys-
tem is developed, it’s crucial to test it in real-world scenarios,
gather feedback, and iteratively refine the model. This ensures
that the system remains aligned with the defined problem and
objectives. This is important because the deployment scenarios
change over time as things evolve.

O Caution 4: Keyword Spotting with TensorFlow Lite Micro

Explore a hands-on guide for building and deploying Keyword
Spotting systems using TensorFlow Lite Micro. Follow steps
from data collection to model training and deployment to micro-
controllers. Learn to create efficient KWS models that recognize
specific keywords amidst background noise. Perfect for those in-
terested in machine learning on embedded systems. Unlock the
potential of voice-enabled devices with TensorFlow Lite Micro!

CO Open in Colab

The current chapter underscores the essential role of data quality in
ML, using Keyword Spotting systems as an example. It outlines key
steps, from problem definition to stakeholder engagement, emphasiz-
ing iterative feedback. The forthcoming chapter will dig deeper into
data quality management, discussing its consequences and future
trends, focusing on the importance of high-quality, diverse data in


https://colab.research.google.com/drive/17I7GL8WTieGzXYKRtQM2FrFi3eLQIrOM
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Al system development, addressing ethical considerations and data
sourcing methods.

5.3 Data Sourcing

The quality and diversity of data gathered are important for develop-
ing accurate and robust Al systems. Sourcing high-quality training
data requires careful consideration of the objectives, resources, and
ethical implications. Data can be obtained from various sources de-
pending on the needs of the project:

5.3.1 Pre-existing datasets

Platforms like Kaggle and UCI Machine Learning Repository provide
a convenient starting point. Pre-existing datasets are valuable for re-
searchers, developers, and businesses. One of their primary advan-
tages is cost efficiency. Creating a dataset from scratch can be time-
consuming and expensive, so accessing ready-made data can save sig-
nificant resources. Moreover, many datasets, like ImageNet, have be-
come standard benchmarks in the machine learning community, al-
lowing for consistent performance comparisons across different mod-
els and algorithms. This data availability means that experiments can
be started immediately without any data collection and preprocessing
delays. In a fast-moving field like ML, this practicality is important.

The quality assurance that comes with popular pre-existing datasets
is important to consider because several datasets have errors in them.
For instance, the ImageNet dataset was found to have over 6.4% er-
rors. Given their widespread use, the community often identifies and
rectifies any errors or biases in these datasets. This assurance is es-
pecially beneficial for students and newcomers to the field, as they
can focus on learning and experimentation without worrying about
data integrity. Supporting documentation often accompanying exist-
ing datasets is invaluable, though this generally applies only to widely
used datasets. Good documentation provides insights into the data
collection process and variable definitions and sometimes even offers
baseline model performances. This information not only aids under-
standing but also promotes reproducibility in research, a cornerstone
of scientific integrity; currently, there is a crisis around improving re-
producibility in machine learning systems. When other researchers
have access to the same data, they can validate findings, test new hy-
potheses, or apply different methodologies, thus allowing us to build
on each other’s work more rapidly.


https://www.kaggle.com/
https://archive.ics.uci.edu/
https://www.image-net.org/
https://arxiv.org/abs/2103.14749
https://arxiv.org/abs/2103.14749
https://arxiv.org/abs/2003.12206
https://arxiv.org/abs/2003.12206

Figure 5.4: Training different

models on the same dataset.

Source: (icons from left to
right: Becris; Freepik; Freepik;
Paul J; SBTS2018).
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While platforms like Kaggle and UCI Machine Learning Repository
are invaluable resources, it’s essential to understand the context in
which the data was collected. Researchers should be wary of potential
overfitting when using popular datasets, as multiple models might
have been trained on them, leading to inflated performance metrics.
Sometimes, these datasets do not reflect the real-world data.

In recent years, there has been growing awareness of bias, validity,
and reproducibility issues that may exist in machine learning datasets.
Figure 5.4 illustrates another critical concern: the potential for mis-
alignment when using the same dataset to train different models.

As shown in Figure 5.4, training multiple models using the same
dataset can result in a ‘misalighment’ between the models and the
world. This misalighment creates an entire ecosystem of models that
reflects only a narrow subset of the real-world data. Such a scenario can
lead to limited generalization and potentially biased outcomes across
various applications using these models.

5.3.2 Web Scraping

Web scraping refers to automated techniques for extracting data from
websites. It typically involves sending HTTP requests to web servers,
retrieving HTML content, and parsing that content to extract relevant
information. Popular tools and frameworks for web scraping include
Beautiful Soup, Scrapy, and Selenium. These tools offer different func-
tionalities, from parsing HTML content to automating web browser in-
teractions, especially for websites that load content dynamically using
JavaScript.


https://venturebeat.com/uncategorized/3-big-problems-with-datasets-in-ai-and-machine-learning/
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Web scraping can effectively gather large datasets for training ma-
chine learning models, particularly when human-labeled data is scarce.
For computer vision research, web scraping enables the collection of
massive volumes of images and videos. Researchers have used this
technique to build influential datasets like ImageNet and Openlmages.
For example, one could scrape e-commerce sites to amass product pho-
tos for object recognition or social media platforms to collect user up-
loads for facial analysis. Even before ImageNet, Stanford’s LabelMe
project scraped Flickr for over 63,000 annotated images covering hun-
dreds of object categories.

Beyond computer vision, web scraping supports gathering textual
data for natural language tasks. Researchers can scrape news sites for
sentiment analysis data, forums and review sites for dialogue systems
research, or social media for topic modeling. For example, the training
data for chatbot ChatGPT was obtained by scraping much of the public
Internet. GitHub repositories were scraped to train GitHub’s Copilot
Al coding assistant.

Web scraping can also collect structured data, such as stock prices,
weather data, or product information, for analytical applications. Once
data is scraped, it is essential to store it in a structured manner, often
using databases or data warehouses. Proper data management ensures
the usability of the scraped data for future analysis and applications.

However, while web scraping offers numerous advantages, there are
significant limitations and ethical considerations to bear. Not all web-
sites permit scraping, and violating these restrictions can lead to le-
gal repercussions. Scraping copyrighted material or private communi-
cations is also unethical and potentially illegal. Ethical web scraping
mandates adherence to a website’s ‘robots.txt” file, which outlines the
sections of the site that can be accessed and scraped by automated bots.

To deter automated scraping, many websites implement rate limits.
If a bot sends too many requests in a short period, it might be tem-
porarily blocked, restricting the speed of data access. Additionally,
the dynamic nature of web content means that data scraped at differ-
ent intervals might need more consistency, posing challenges for lon-
gitudinal studies. However, there are emerging trends like Web Navi-
gation where machine learning algorithms can automatically navigate
the website to access the dynamic content.

The volume of pertinent data available for scraping might be limited
for niche subjects. For example, while scraping for common topics like
images of cats and dogs might yield abundant data, searching for rare
medical conditions might be less fruitful. Moreover, the data obtained
through scraping is often unstructured and noisy, necessitating thor-
ough preprocessing and cleaning. It is crucial to understand that not


https://www.image-net.org/
https://storage.googleapis.com/openimages/web/index.html
https://people.csail.mit.edu/torralba/publications/labelmeApplications.pdf
https://arxiv.org/abs/1812.09195
https://arxiv.org/abs/1812.09195

Figure 5.5: A picture of old traf-
fic lights (1914). Source: Vox.
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all scraped data will be of high quality or accuracy. Employing verifi-
cation methods, such as cross-referencing with alternate data sources,
can improve data reliability.

Privacy concerns arise when scraping personal data, emphasizing
the need for anonymization. Therefore, it is paramount to adhere to a
website’s Terms of Service, confine data collection to public domains,
and ensure the anonymity of any personal data acquired.

While web scraping can be a scalable method to amass large train-
ing datasets for Al systems, its applicability is confined to specific data
types. For example, web scraping makes sourcing data for Inertial Mea-
surement Units (IMU) for gesture recognition more complex. At most,
one can scrape an existing dataset.

Web scraping can yield inconsistent or inaccurate data. For example,
the photo in Figure 5.5 shows up when you search for ‘traffic light’ on
Google Images. It is an image from 1914 that shows outdated traffic
lights, which are also barely discernible because of the image’s poor
quality. This can be problematic for web-scraped datasets, as it pollutes
the dataset with inapplicable (old) data samples.

-
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O Caution 5: Web Scraping

Discover the power of web scraping with Python using libraries
like Beautiful Soup and Pandas. This exercise will scrape Python
documentation for function names and descriptions and explore
NBA player stats. By the end, you'll have the skills to extract and
analyze data from real-world websites. Ready to dive in? Access



https://www.vox.com/2015/8/5/9097713/when-was-the-first-traffic-light-installed
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the Google Colab notebook below and start practicing!

CO Open in Colab

5.3.3 Crowdsourcing

Crowdsourcing for datasets is the practice of obtaining data using the
services of many people, either from a specific community or the gen-
eral public, typically via the Internet. Instead of relying on a small
team or specific organization to collect or label data, crowdsourcing
leverages the collective effort of a vast, distributed group of partici-
pants. Services like Amazon Mechanical Turk enable the distribution
of annotation tasks to a large, diverse workforce. This facilitates the
collection of labels for complex tasks like sentiment analysis or image
recognition requiring human judgment.

Crowdsourcing has emerged as an effective approach for data col-
lection and problem-solving. One major advantage of crowdsourcing
is scalability—by distributing tasks to a large, global pool of contrib-
utors on digital platforms, projects can process huge volumes of data
quickly. This makes crowdsourcing ideal for large-scale data labeling,
collection, and analysis.

In addition, crowdsourcing taps into a diverse group of participants,
bringing a wide range of perspectives, cultural insights, and language
abilities that can enrich data and enhance creative problem-solving in
ways that a more homogenous group may not. Because crowdsourc-
ing draws from a large audience beyond traditional channels, it is more
cost-effective than conventional methods, especially for simpler micro-
tasks.

Crowdsourcing platforms also allow for great flexibility, as task pa-
rameters can be adjusted in real time based on initial results. This cre-
ates a feedback loop for iterative improvements to the data collection
process. Complex jobs can be broken down into microtasks and dis-
tributed to multiple people, with results cross-validated by assigning
redundant versions of the same task. When thoughtfully managed,
crowdsourcing enables community engagement around a collabora-
tive project, where participants find reward in contributing.

However, while crowdsourcing offers numerous advantages, it’s es-
sential to approach it with a clear strategy. While it provides access to a
diverse set of annotators, it also introduces variability in the quality of
annotations. Additionally, platforms like Mechanical Turk might not
always capture a complete demographic spectrum; often, tech-savvy
individuals are overrepresented, while children and older people may


https://colab.research.google.com/github/Andy-Pham-72/Web-Scraping-with-BeautifulSoup-and-Pandas/blob/master/Web_scraping_with_beautiful_soup_and_pandas_complete.ipynb
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be underrepresented. Providing clear instructions and training for the
annotators is crucial. Periodic checks and validations of the labeled
data help maintain quality. This ties back to the topic of clear Problem
Definition that we discussed earlier. Crowdsourcing for datasets also
requires careful attention to ethical considerations. It’s crucial to en-
sure that participants are informed about how their data will be used
and that their privacy is protected. Quality control through detailed
protocols, transparency in sourcing, and auditing is essential to ensure
reliable outcomes.

For TinyML, crowdsourcing can pose some unique challenges.
TinyML devices are highly specialized for particular tasks within tight
constraints. As a result, the data they require tends to be very specific.
Obtaining such specialized data from a general audience may be
difficult through crowdsourcing. For example, TinyML applications
often rely on data collected from certain sensors or hardware. Crowd-
sourcing would require participants to have access to very specific and
consistent devices - like microphones, with the same sampling rates.
These hardware nuances present obstacles even for simple audio tasks
like keyword spotting.

Beyond hardware, the data itself needs high granularity and qual-
ity, given the limitations of TinyML. It can be hard to ensure this when
crowdsourcing from those unfamiliar with the application’s context
and requirements. There are also potential issues around privacy, real-
time collection, standardization, and technical expertise. Moreover,
the narrow nature of many TinyML tasks makes accurate data label-
ing easier with the proper understanding. Participants may need full
context to provide reliable annotations.

Thus, while crowdsourcing can work well in many cases, the spe-
cialized needs of TinyML introduce unique data challenges. Careful
planning is required for guidelines, targeting, and quality control.
For some applications, crowdsourcing may be feasible, but others
may require more focused data collection efforts to obtain relevant,
high-quality training data.

5.3.4 Synthetic Data

Synthetic data generation can be a valuable solution for addressing
data collection limitations. Figure 5.6 illustrates how this process
works: synthetic data is merged with historical data to create a larger,
more diverse dataset for model training.

As shown in the figure, synthetic data involves creating informa-
tion that wasn't originally captured or observed but is generated using
algorithms, simulations, or other techniques to resemble real-world
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data. This approach has become particularly valuable in fields where
real-world data is scarce, expensive, or ethically challenging to obtain,
such as in TinyML applications. Various techniques, including Genera-
tive Adversarial Networks (GANSs), can produce high-quality synthetic
data almost indistinguishable from real data. These methods have ad-
vanced significantly, making synthetic data generation increasingly re-
alistic and reliable.

More real-world data may need to be available for analysis or train-
ing machine learning models in many domains, especially emerging
ones. Synthetic data can fill this gap by producing large volumes of
data that mimic real-world scenarios. For instance, detecting the sound
of breaking glass might be challenging in security applications where
a TinyML device is trying to identify break-ins. Collecting real-world
data would require breaking numerous windows, which is impractical
and costly.

Moreover, having a diverse dataset is crucial in machine learning, es-
pecially in deep learning. Synthetic data can augment existing datasets
by introducing variations, thereby enhancing the robustness of mod-
els. For example, SpecAugment is an excellent data augmentation tech-
nique for Automatic Speech Recognition (ASR) systems.

Privacy and confidentiality are also big issues. Datasets containing
sensitive or personal information pose privacy concerns when shared
or used. Synthetic data, being artificially generated, doesn’t have these
direct ties to real individuals, allowing for safer use while preserving
essential statistical properties.

Generating synthetic data, especially once the generation mecha-
nisms have been established, can be a more cost-effective alternative.
Synthetic data eliminates the need to break multiple windows to
gather relevant data in the security above application scenario.

Figure 5.6: Increasing training
data size with synthetic data
generation. Source: AnyLogic.


https://www.anylogic.com/features/artificial-intelligence/synthetic-data/

5.4. Data Storage 98

Many embedded use cases deal with unique situations, such as
manufacturing plants, that are difficult to simulate. Synthetic data
allows researchers complete control over the data generation process,
enabling the creation of specific scenarios or conditions that are
challenging to capture in real life.

While synthetic data offers numerous advantages, it is essential to
use it judiciously. Care must be taken to ensure that the generated data
accurately represents the underlying real-world distributions and does
not introduce unintended biases.

O Caution 6: Synthetic Data

Let us learn about synthetic data generation using Generative
Adversarial Networks (GANSs) on tabular data. We'll take a
hands-on approach, diving into the workings of the CTGAN
model and applying it to the Synthea dataset from the healthcare
domain. From data preprocessing to model training and evalua-
tion, we'll go step-by-step, learning how to create synthetic data,
assess its quality, and unlock the potential of GANs for data aug-
mentation and real-world applications.

CO Open in Colab

5.4 Data Storage

Data sourcing and data storage go hand in hand, and data must be
stored in a format that facilitates easy access and processing. Depend-
ing on the use case, various kinds of data storage systems can be used
to store your datasets. Some examples are shown in Table 5.1.

Table 5.1: Comparative overview of the database, data warehouse, and

data lake.
Data
Database Warehouse Data Lake
Purpose Operational ~ Analytical
and
transactional
Data type Structured Structured, semi-structured,

and/or unstructured


https://colab.research.google.com/drive/1nwbvkg32sOUC69zATCfXOygFUBeo0dsx?usp=sharing#scrollTo=TkwYknr44eFn

CHAPTER 5. DATA ENGINEERING 99

Data
Database Warehouse Data Lake
Scale Small to Large volumes of integrated
large data Large volumes of diverse
volumes of data
data
Examples MySQL Google BigQuery, Amazon
Redshift, Microsoft Azure
Synapse, Google Cloud
Storage, AWS S3, Azure Data
Lake Storage

The stored data is often accompanied by metadata, defined as
‘data about data. It provides detailed contextual information about
the data, such as means of data creation, time of creation, attached
data use license, etc. Figure 5.7 illustrates the key pillars of data
collection and their associated methods, highlighting the importance
of structured data management. For example, Hugging Face has
implemented Dataset Cards to promote responsible data use. These
cards, which align with the documentation pillar shown in Figure 5.7,
allow dataset creators to disclose potential biases and educate users
about a dataset’s contents and limitations.

The dataset cards provide important context on appropriate dataset
usage by highlighting biases and other important details. Having this
type of structured metadata can also allow for fast retrieval, aligning
with the efficient data management principles illustrated in the figure.
Once the model is developed and deployed to edge devices, the stor-
age systems can continue to store incoming data, model updates, or
analytical results, potentially utilizing methods from multiple pillars
shown in Figure 5.7. This ongoing data collection and management
process ensures that the model remains up-to-date and relevant in its
operational environment.

Data Governance: With a large amount of data storage, it is also
imperative to have policies and practices (i.e., data governance) that
help manage data during its life cycle, from acquisition to disposal.
Data governance outlines how data is managed and includes making
key decisions about data access and control. Figure 5.8 illustrates
the different domains involved in data governance. It involves ex-
ercising authority and making decisions concerning data to uphold
its quality, ensure compliance, maintain security, and derive value.
Data governance is operationalized by developing policies, incentives,
and penalties, cultivating a culture that perceives data as a valuable
asset. Specific procedures and assigned authorities are implemented


https://huggingface.co/
https://huggingface.co/docs/hub/datasets-cards
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Data governance utilizes three integrative approaches: planning and
control, organizational, and risk-based.

* The planning and control approach, common in IT, aligns busi-
ness and technology through annual cycles and continuous ad-
justments, focusing on policy-driven, auditable governance.

* The organizational approach emphasizes structure, establishing
authoritative roles like Chief Data Officers and ensuring respon-
sibility and accountability in governance.


https://www.altexsoft.com/blog/data-collection-machine-learning/
https://www.groundwatergovernance.org/the-importance-of-governance-for-all-stakeholders/
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* The risk-based approach, intensified by Al advancements, fo-
cuses on identifying and managing inherent risks in data and al-
gorithms. It especially addresses Al-specific issues through regu-
lar assessments and proactive risk management strategies, allow-
ing for incidental and preventive actions to mitigate undesired
algorithm impacts.

Some examples of data governance across different sectors include:

® Medicine: Health Information Exchanges(HIEs) enable the shar-
ing of health information across different healthcare providers
to improve patient care. They implement strict data governance
practices to maintain data accuracy, integrity, privacy, and se-
curity, complying with regulations such as the Health Insurance
Portability and Accountability Act (HIPAA). Governance policies
ensure that patient data is only shared with authorized entities
and that patients can control access to their information.

* Finance: Basel IIl Framework is an international regulatory
framework for banks. It ensures that banks establish clear
policies, practices, and responsibilities for data management,
ensuring data accuracy, completeness, and timeliness. Not only
does it enable banks to meet regulatory compliance, but it also
prevents financial crises by more effectively managing risks.

* Government: Government agencies managing citizen data, pub-
lic records, and administrative information implement data gov-
ernance to manage data transparently and securely. The Social
Security System in the US and the Aadhar system in India are
good examples of such governance systems.

Special data storage considerations for TinyML

Efficient Audio Storage Formats: Keyword spotting systems need
specialized audio storage formats to enable quick keyword searching
in audio data. Traditional formats like WAV and MP3 store full audio
waveforms, which require extensive processing to search through.
Keyword spotting uses compressed storage optimized for snippet-
based search. One approach is to store compact acoustic features
instead of raw audio. Such a workflow would involve:

¢ Extracting acoustic features: Mel-frequency cepstral coefficients
(MFCCs) commonly represent important audio characteristics.

¢ Creating Embeddings: Embeddings transform extracted acous-
tic features into continuous vector spaces, enabling more com-
pact and representative data storage. This representation is es-
sential in converting high-dimensional data, like audio, into a


https://www.healthit.gov/topic/health-it-and-health-information-exchange-basics/what-hie
https://www.cdc.gov/phlp/publications/topic/hipaa.html
https://www.cdc.gov/phlp/publications/topic/hipaa.html
https://www.bis.org/bcbs/basel3.htm
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more manageable and efficient format for computation and stor-
age.

* Vector quantization: This technique represents high-dimensional
data, like embeddings, with lower-dimensional vectors, reduc-
ing storage needs. Initially, a codebook is generated from the
training data to define a set of code vectors representing the
original data vectors. Subsequently, each data vector is matched
to the nearest codeword according to the codebook, ensuring
minimal information loss.

* Sequential storage: The audio is fragmented into short frames,
and the quantized features (or embeddings) for each frame are
stored sequentially to maintain the temporal order, preserving
the coherence and context of the audio data.

This format enables decoding the features frame-by-frame for key-
word matching. Searching the features is faster than decompressing
the full audio.

Selective Network Output Storage: Another technique for reduc-
ing storage is to discard the intermediate audio features stored during
training but not required during inference. The network is run on full
audio during training. However, only the final outputs are stored dur-
ing inference.

5.5 Data Processing

Data processing refers to the steps involved in transforming raw data
into a format suitable for feeding into machine learning algorithms.
It is a crucial stage in any ML workflow, yet often overlooked. With
proper data processing, ML models are likely to achieve optimal per-
formance. Figure 5.9 shows a breakdown of a data scientist’s time allo-
cation, highlighting the significant portion spent on data cleaning and
organizing (%60).

Proper data cleaning is a crucial step that directly impacts model per-
formance. Real-world data is often dirty, containing errors, missing
values, noise, anomalies, and inconsistencies. Data cleaning involves
detecting and fixing these issues to prepare high-quality data for mod-
eling. By carefully selecting appropriate techniques, data scientists can
improve model accuracy, reduce overfitting, and train algorithms to
learn more robust patterns. Overall, thoughtful data processing allows
machine learning systems to uncover insights better and make predic-
tions from real-world data.
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What data scientists spend the most time doing

® Building training sets: 3%

Data often comes from diverse sources and can be unstructured or
semi-structured. Thus, processing and standardizing it is essential, en-
suring it adheres to a uniform format. Such transformations may in-
clude:

e Normalizing numerical variables
¢ Encoding categorical variables
¢ Using techniques like dimensionality reduction

Data validation serves a broader role than ensuring adherence to cer-
tain standards, like preventing temperature values from falling below
absolute zero. These issues arise in TinyML because sensors may mal-
function or temporarily produce incorrect readings; such transients are
not uncommon. Therefore, it is imperative to catch data errors early be-
fore propagating through the data pipeline. Rigorous validation pro-
cesses, including verifying the initial annotation practices, detecting
outliers, and handling missing values through techniques like mean
imputation, contribute directly to the quality of datasets. This, in turn,
impacts the performance, fairness, and safety of the models trained on
them.

Let’s take a look at Figure 5.10 for an example of a data process-
ing pipeline. In the context of TinyML, the Multilingual Spoken
Words Corpus (MSWC) is an example of data processing pipelines—
systematic and automated workflows for data transformation, storage,
and processing. The input data (which’s a collection of short record-
ings) goes through several phases of processing, such as audio-word
alignement and keyword extraction.

MSWC streamlines the data flow, from raw data to usable datasets,
data pipelines improve productivity and facilitate the rapid develop-
ment of machine learning models. The MSWC is an expansive and ex-
panding collection of audio recordings of spoken words in 50 different
languages, which are collectively used by over 5 billion people. This

Figure 59: Data scientists’
tasks breakdown by time spent.
Source: Forbes.


https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/?sh=20c55a266f63

Figure 510: An overview
of the Multilingual Spoken
Words Corpus (MSWC) data
processing pipeline.  Source:
Mazumder et al. (2021).
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dataset is intended for academic study and business uses in areas like
keyword identification and speech-based search. It is openly licensed
under Creative Commons Attribution 4.0 for broad usage.
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The MSWC used a forced alignment method to automatically
extract individual word recordings to train keyword-spotting mod-
els from the Common Voice project, which features crowdsourced
sentence-level recordings. Forced alignment refers to long-standing
methods in speech processing that predict when speech phenomena
like syllables, words, or sentences start and end within an audio
recording. In the MSWC data, crowdsourced recordings often feature
background noises, such as static and wind. Depending on the
model’s requirements, these noises can be removed or intentionally
retained.

Maintaining the integrity of the data infrastructure is a continuous
endeavor. This encompasses data storage, security, error handling, and
stringent version control. Periodic updates are crucial, especially in
dynamic realms like keyword spotting, to adjust to evolving linguistic
trends and device integrations.

There is a boom in data processing pipelines, commonly found in
ML operations toolchains, which we will discuss in the MLOps chap-
ter. Briefly, these include frameworks like MLOps by Google Cloud.
It provides methods for automation and monitoring at all steps of ML
system construction, including integration, testing, releasing, deploy-
ment, and infrastructure management. Several mechanisms focus on
data processing, an integral part of these systems.

O Caution 7: Data Processing

Let us explore two significant projects in speech data processing
and machine learning. The MSWC is a vast audio dataset with


https://montreal-forced-aligner.readthedocs.io/en/latest/
https://commonvoice.mozilla.org/
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over 340,000 keywords and 23.4 million 1-second spoken exam-
ples. It’s used in various applications like voice-enabled devices
and call center automation. The Few-Shot Keyword Spotting
project introduces a new approach for keyword spotting across
different languages, achieving impressive results with minimal
training data. We'll look into the MSWC dataset, learn how
to structure it effectively, and then train a few-shot keyword-
spotting model. Let’s get started!

CO Open in Colab

5.6 Data Labeling

Data labeling is important in creating high-quality training datasets for
machine learning models. Labels provide ground truth information,
allowing models to learn relationships between inputs and desired out-
puts. This section covers key considerations for selecting label types,
formats, and content to capture the necessary information for tasks.
It discusses common annotation approaches, from manual labeling to
crowdsourcing to Al-assisted methods, and best practices for ensuring
label quality through training, guidelines, and quality checks. We also
emphasize the ethical treatment of human annotators. The integration
of Al to accelerate and augment human annotation is also explored.
Understanding labeling needs, challenges, and strategies are essential
for constructing reliable, useful datasets to train performant, trustwor-
thy machine learning systems.

5.6.1 Label Types

Labels capture information about key tasks or concepts. Figure 5.11
includes some common label types: a “classification label” is used for
categorizing images with labels (labeling an image with “dog” if it fea-
tures a dog); a “bounding box” identifies object location (drawing a box
around the dog); a “segmentation map” classifies objects at the pixel
level (highlighting the dog in a distinct color); a “caption” provides
descriptive annotations (describing the dog’s actions, position, color,
etc.); and a “transcript” denotes audio content. The choice of label for-
mat depends on the use case and resource constraints, as more detailed
labels require greater effort to collect (Johnson-Roberson et al. 2017).
Unless focused on self-supervised learning, a dataset will likely
provide labels addressing one or more tasks of interest. Given their
unique resource constraints, dataset creators must consider what


https://colab.research.google.com/github/harvard-edge/multilingual_kws/blob/main/multilingual_kws_intro_tutorial.ipynb#scrollTo=ApnPyIlYNFYD

Figure 5.11: An overview of
common label types.
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information labels should capture and how they can practically
obtain the necessary labels. Creators must first decide what type(s)
of content labels should capture. For example, a creator interested
in car detection would want to label cars in their dataset. Still, they
might also consider whether to simultaneously collect labels for other
tasks that the dataset could potentially be used for, such as pedestrian
detection.

Additionally, annotators can provide metadata that provides insight
into how the dataset represents different characteristics of interest (see
Section 5.9). The Common Voice dataset, for example, includes var-
ious types of metadata that provide information about the speakers,
recordings, and dataset quality for each language represented (Ardila
et al. 2020). They include demographic splits showing the number of
recordings by speaker age range and gender. This allows us to see who
contributed recordings for each language. They also include statistics
like average recording duration and total hours of validated record-
ings. These give insights into the nature and size of the datasets for
each language.

Additionally, quality control metrics like the percentage of record-
ings that have been validated are useful to know how complete
and clean the datasets are. The metadata also includes normalized
demographic splits scaled to 100% for comparison across languages.
This highlights representation differences between higher and lower
resource languages.

Next, creators must determine the format of those labels. For exam-
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ple, a creator interested in car detection might choose between binary
classification labels that say whether a car is present, bounding boxes
that show the general locations of any cars, or pixel-wise segmenta-
tion labels that show the exact location of each car. Their choice of
label format may depend on their use case and resource constraints, as
finer-grained labels are typically more expensive and time-consuming
to acquire.

5.6.2 Annotation Methods

Common annotation approaches include manual labeling, crowd-
sourcing, and semi-automated techniques. Manual labeling by experts
yields high quality but needs more scalability. Crowdsourcing enables
non-experts to distribute annotation, often through dedicated plat-
forms (Sheng and Zhang 2019). Weakly supervised and programmatic
methods can reduce manual effort by heuristically or automatically
generating labels (Ratner et al. 2018).

After deciding on their labels” desired content and format, creators
begin the annotation process. To collect large numbers of labels from
human annotators, creators frequently rely on dedicated annotation
platforms, which can connect them to teams of human annotators.
When using these platforms, creators may need more insight into
annotators’ backgrounds and experience levels with topics of interest.
However, some platforms offer access to annotators with specific
expertise (e.g., doctors).

O Caution 8: Bootstrapped Labels

Let us explore Wake Vision, a comprehensive dataset designed
for TinyML person detection. This dataset is derived from a
larger, general-purpose dataset, Open Images (Kuznetsova et al.
2020), and tailored specifically for binary person detection.

The transformation process involves filtering and relabeling the
existing labels and bounding boxes in Open Images using an au-
tomated pipeline. This method not only conserves time and re-
sources but also ensures the dataset meets the specific require-
ments of TinyML applications.

Additionally, we generate metadata to benchmark the fairness
and robustness of models in challenging scenarios.

Let’s get started!

CO Open in Colab


https://colab.research.google.com/drive/1HC5lkBblrdRZ4vaT5M5061TKKep0MS-M?usp=sharing

Figure 5.12: Some examples
of hard labeling cases. Source:
Northcutt, Athalye, and
Mueller (2021).
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5.6.3 Ensuring Label Quality

There is no guarantee that the data labels are actually correct. Fig-
ure 5.12 shows some examples of hard labeling cases: some errors arise
from blurred pictures that make them hard to identify (the frog image),
and others stem from a lack of domain knowledge (the black stork case).
It is possible that despite the best instructions being given to labelers,
they still mislabel some images (Northcutt, Athalye, and Mueller 2021).
Strategies like quality checks, training annotators, and collecting multi-
ple labels per datapoint can help ensure label quality. For ambiguous
tasks, multiple annotators can help identify controversial datapoints
and quantify disagreement levels.

MNIST  CIFAR-10 CIFAR-100 Caltech-256 ImageNet QuickDraw

given: cat given: lobster given: ewer

given: 5
corrected: 3 corrected: frog corrected: crab corrected: teapot corrected: black stork  cormrected: eye

given: white stork given: tiger

When working with human annotators, offering fair compensation
and otherwise prioritizing ethical treatment is important, as annota-
tors can be exploited or otherwise harmed during the labeling process
(Perrigo, 2023). For example, if a dataset is likely to contain disturbing
content, annotators may benefit from having the option to view images
in grayscale (Google, n.d.).

5.6.4 Al-Assisted Annotation

ML has an insatiable demand for data. Therefore, more data is needed.
This raises the question of how we can get more labeled data. Rather
than always generating and curating data manually, we can rely on
existing Al models to help label datasets more quickly and cheaply,
though often with lower quality than human annotation. This can be
done in various ways as shown in Figure 5.13, including the following:

¢ Pre-annotation: Al models can generate preliminary labels
for a dataset using methods such as semi-supervised learning
(Chapelle, Scholkopf, and Zien 2009), which humans can then
review and correct. This can save a significant amount of time,
especially for large datasets.

e Active learning: Al models can identify the most informative
data points in a dataset, which can then be prioritized for human
annotation. This can help improve the labeled dataset’s quality
while reducing the overall annotation time.
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* Quality control: Al models can identify and flag potential errors
in human annotations, helping to ensure the accuracy and con-
sistency of the labeled dataset.

How to get more labeled training data?

Figure 5.13: Strategies for
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Here are some examples of how Al-assisted annotation has been pro-
posed to be useful:

* Medical imaging: Al-assisted annotation labels medical images,
such as MRI scans and X-rays (R. Krishnan, Rajpurkar, and
Topol 2022). Carefully annotating medical datasets is extremely
challenging, especially at scale, since domain experts are scarce
and become costly. This can help to train AI models to diagnose
diseases and other medical conditions more accurately and
efficiently.

e Self-driving cars: Al-assisted annotation is being used to label
images and videos from self-driving cars. This can help to train
Al models to identify objects on the road, such as other vehicles,
pedestrians, and traffic signs.

* Social media: Al-assisted annotation labels social media posts
like images and videos. This can help to train AI models to iden-
tify and classify different types of content, such as news, adver-
tising, and personal posts.

5.7 Data Version Control

Production systems are perpetually inundated with fluctuating and es-
calating volumes of data, prompting the rapid emergence of numerous
data replicas. This increasing data serves as the foundation for train-
ing machine learning models. For instance, a global sales company


https://ai.stanford.edu/blog/weak-supervision/
https://ai.stanford.edu/blog/weak-supervision/
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engaged in sales forecasting continuously receives consumer behavior
data. Similarly, healthcare systems formulating predictive models for
disease diagnosis are consistently acquiring new patient data. TinyML
applications, such as keyword spotting, are highly data-hungry regard-
ing the amount of data generated. Consequently, meticulous tracking
of data versions and the corresponding model performance is impera-
tive.

Data Version Control offers a structured methodology to handle
alterations and versions of datasets efficiently. It facilitates moni-
toring modifications, preserves multiple versions, and guarantees
reproducibility and traceability in data-centric projects. Furthermore,
data version control provides the versatility to review and use specific
versions as needed, ensuring that each stage of the data processing
and model development can be revisited and audited precisely and
easily. It has a variety of practical uses -

Risk Management: Data version control allows transparency and
accountability by tracking dataset versions.

Collaboration and Efficiency: Easy access to different dataset ver-
sions in one place can improve data sharing of specific checkpoints
and enable efficient collaboration.

Reproducibility: Data version control allows for tracking the perfor-
mance of models concerning different versions of the data, and there-
fore enabling reproducibility.

Key Concepts

e Commits: It is an immutable snapshot of the data at a specific
point in time, representing a unique version. Every commit is
associated with a unique identifier to allow

¢ Branches: Branching allows developers and data scientists
to diverge from the main development line and continue to
work independently without affecting other branches. This is
especially useful when experimenting with new features or
models, enabling parallel development and experimentation
without the risk of corrupting the stable main branch.

* Merges: Merges help to integrate changes from different
branches while maintaining the integrity of the data.

With data version control in place, we can track the changes shown
in Figure 5.14, reproduce previous results by reverting to older ver-
sions, and collaborate safely by branching off and isolating the changes.

Popular Data Version Control Systems

[DVCI: It stands for Data Version Control in short and is an open-
source, lightweight tool that works on top of Git Hub and supports all


https://dvc.org/doc
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kinds of data formats. It can seamlessly integrate into the workflow if
Gitis used to manage code. It captures the versions of data and models
in the Git commits while storing them on-premises or on the cloud
(e.g., AWS, Google Cloud, Azure). These data and models (e.g., ML
artifacts) are defined in the metadata files, which get updated in every
commit. It can allow metrics tracking of models on different versions
of the data.

lakeFS: It is an open-source tool that supports the data version con-
trol on data lakes. It supports many git-like operations, such as branch-
ing and merging of data, as well as reverting to previous versions of the
data. It also has a unique Ul feature, making exploring and managing
data much easier.

Git LFS: Itis useful for data version control on smaller-sized datasets.
It uses Git’s inbuilt branching and merging features but is limited in
tracking metrics, reverting to previous versions, or integrating with
data lakes.

5.8 Optimizing Data for Embedded Al

Creators working on embedded systems may have unusual priorities
when cleaning their datasets. On the one hand, models may be de-
veloped for unusually specific use cases, requiring heavy filtering of
datasets. While other natural language models may be capable of turn-
ing any speech into text, a model for an embedded system may be fo-
cused on a single limited task, such as detecting a keyword. As a result,
creators may aggressively filter out large amounts of data because they
need to address the task of interest. An embedded Al system may also

Figure 5.14: Data versioning.
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be tied to specific hardware devices or environments. For example, a
video model may need to process images from a single type of camera,
which will only be mounted on doorbells in residential neighborhoods.
In this scenario, creators may discard images if they came from a dif-
ferent kind of camera, show the wrong type of scenery, or were taken
from the wrong height or angle.

On the other hand, embedded Al systems are often expected to pro-
vide especially accurate performance in unpredictable real-world set-
tings. This may lead creators to design datasets to represent variations
in potential inputs and promote model robustness. As a result, they
may define a narrow scope for their project but then aim for deep cover-
age within those bounds. For example, creators of the doorbell model
mentioned above might try to cover variations in data arising from:

* Geographically, socially, and architecturally diverse neighbor-
hoods

* Different types of artificial and natural lighting

¢ Different seasons and weather conditions

® Obstructions (e.g., raindrops or delivery boxes obscuring the
camera’s view)

As described above, creators may consider crowdsourcing or syn-
thetically generating data to include these variations.

5.9 Data Transparency

By providing clear, detailed documentation, creators can help devel-
opers understand how best to use their datasets. Several groups have
suggested standardized documentation formats for datasets, such as
Data Cards (Pushkarna, Zaldivar, and Kjartansson 2022), datasheets
(Gebru et al. 2021), data statements (Bender and Friedman 2018), or
Data Nutrition Labels (Holland et al. 2020). When releasing a dataset,
creators may describe what kinds of data they collected, how they col-
lected and labeled it, and what kinds of use cases may be a good or
poor fit for the dataset. Quantitatively, it may be appropriate to show
how well the dataset represents different groups (e.g., different gender
groups, different cameras).

Figure 5.15 shows an example of a data card for a computer vision
(CV) dataset. It includes some basic information about the dataset and
instructions on how to use it, including known biases.

Keeping track of data provenance- essentially the origins and the
journey of each data point through the data pipeline- is not merely
a good practice but an essential requirement for data quality. Data
provenance contributes significantly to the transparency of machine
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learning systems. Transparent systems make it easier to scrutinize data
points, enabling better identification and rectification of errors, biases,
or inconsistencies. For instance, if an ML model trained on medical
data is underperforming in particular areas, tracing the provenance
can help identify whether the issue is with the data collection methods,
the demographic groups represented in the data or other factors. This
level of transparency doesn’t just help debug the system but also plays
a crucial role in enhancing the overall data quality. By improving the
reliability and credibility of the dataset, data provenance also enhances
the model’s performance and its acceptability among end-users.

When producing documentation, creators should also specify how
users can access the dataset and how the dataset will be maintained
over time. For example, users may need to undergo training or receive
special permission from the creators before accessing a protected infor-
mation dataset, as with many medical datasets. In some cases, users
may not access the data directly. Instead, they must submit their model
to be trained on the dataset creators” hardware, following a federated
learning setup (Aledhari et al. 2020). Creators may also describe how
long the dataset will remain accessible, how the users can submit feed-
back on any errors they discover, and whether there are plans to up-
date the dataset.

Some laws and regulations also promote data transparency through
new requirements for organizations:

® General Data Protection Regulation (GDPR) in the European
Union: It establishes strict requirements for processing and
protecting the personal data of EU citizens. It mandates plain-
language privacy policies that clearly explain what data is
collected, why it is used, how long it is stored, and with whom
it is shared. GDPR also mandates that privacy notices must
include details on the legal basis for processing, data transfers,
retention periods, rights to access and deletion, and contact info
for data controllers.

¢ California’s Consumer Privacy Act (CCPA): CCPA requires
clear privacy policies and opt-out rights to sell personal data.
Significantly, it also establishes rights for consumers to request
their specific data be disclosed. Businesses must provide copies
of collected personal information and details on what it is used
for, what categories are collected, and what third parties receive.
Consumers can identify data points they believe need to be
more accurate. The law represents a major step forward in
empowering personal data access.

Ensured data transparency presents several challenges, especially
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because it requires significant time and financial resources. Data sys-
tems are also quite complex, and full transparency can take time. Full
transparency may also overwhelm consumers with too much detail. Fi-
nally, it is also important to balance the tradeoff between transparency
and privacy.

5.10 Licensing

Many high-quality datasets either come from proprietary sources or
contain copyrighted information. This introduces licensing as a chal-
lenging legal domain. Companies eager to train ML systems must en-
gage in negotiations to obtain licenses that grant legal access to these
datasets. Furthermore, licensing terms can impose restrictions on data
applications and sharing methods. Failure to comply with these li-
censes can have severe consequences.

For instance, ImageNet, one of the most extensively utilized datasets
for computer vision research, is a case in point. Most of its images
were procured from public online sources without explicit permission,
sparking ethical concerns (Prabhu and Birhane, 2020). Accessing the
ImageNet dataset for corporations requires registration and adherence
to its terms of use, which restricts commercial usage (ImageNet, 2021).
Major players like Google and Microsoft invest significantly in licens-
ing datasets to improve their ML vision systems. However, the cost fac-
tor restricts accessibility for researchers from smaller companies with
constrained budgets.

The legal domain of data licensing has seen major cases that help
define fair use parameters. A prominent example is Authors Guild,
Inc. v. Google, Inc. This 2005 lawsuit alleged that Google’s book scan-
ning project infringed copyrights by displaying snippets without per-
mission. However, the courts ultimately ruled in Google’s favor, up-
holding fair use based on the transformative nature of creating a search-
able index and showing limited text excerpts. This precedent provides
some legal grounds for arguing fair use protections apply to indexing
datasets and generating representative samples for machine learning.
However, license restrictions remain binding, so a comprehensive anal-
ysis of licensing terms is critical. The case demonstrates why negotia-
tions with data providers are important to enable legal usage within
acceptable bounds.

New Data Regulations and Their Implications

New data regulations also impact licensing practices. The legislative
landscape is evolving with regulations like the EU’s Artificial Intelli-
gence Act, which is poised to regulate Al system development and use
within the European Union (EU). This legislation:


https://www.image-net.org/
https://digital-strategy.ec.europa.eu/en/policies/european-approach-artificial-intelligence
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1. Classifies Al systems by risk.
2. Mandates development and usage prerequisites.

3. Emphasizes data quality, transparency, human oversight, and ac-
countability.

Additionally, the EU Act addresses the ethical dimensions and op-
erational challenges in sectors such as healthcare and finance. Key el-
ements include the prohibition of Al systems posing “unacceptable”
risks, stringent conditions for high-risk systems, and minimal obliga-
tions for “limited risk” Al systems. The proposed European Al Board
will oversee and ensure the implementation of efficient regulation.

Challenges in Assembling ML Training Datasets

Complex licensing issues around proprietary data, copyright law,
and privacy regulations constrain options for assembling ML training
datasets. However, expanding accessibility through more open licens-
ing or public-private data collaborations could greatly accelerate in-
dustry progress and ethical standards.

Sometimes, certain portions of a dataset may need to be removed
or obscured to comply with data usage agreements or protect sensi-
tive information. For example, a dataset of user information may have
names, contact details, and other identifying data that may need to be
removed from the dataset; this is well after the dataset has already been
actively sourced and used for training models. Similarly, a dataset
that includes copyrighted content or trade secrets may need to filter
out those portions before being distributed. Laws such as the General
Data Protection Regulation (GDPR), the California Consumer Privacy
Act (CCPA), and the Amended Act on the Protection of Personal Infor-
mation (APPI) have been passed to guarantee the right to be forgotten.
These regulations legally require model providers to erase user data
upon request.

Data collectors and providers need to be able to take appropriate
measures to de-identify or filter out any proprietary, licensed, confi-
dential, or regulated information as needed. Sometimes, the users may
explicitly request that their data be removed.

The ability to update the dataset by removing data from the dataset
will enable the creators to uphold legal and ethical obligations around
data usage and privacy. However, the ability to remove data has some
important limitations. We must consider that some models may have
already been trained on the dataset, and there is no clear or known way
to eliminate a particular data sample’s effect from the trained network.
There is no erase mechanism. Thus, this begs the question, should
the model be retrained from scratch each time a sample is removed?
That’s a costly option. Once data has been used to train a model, simply


https://www.ppc.go.jp/files/pdf/280222_amendedlaw.pdf
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removing it from the original dataset may not fully eliminate its impact
on the model’s behavior. New research is needed around the effects of
data removal on already-trained models and whether full retraining
is necessary to avoid retaining artifacts of deleted data. This presents
an important consideration when balancing data licensing obligations
with efficiency and practicality in an evolving, deployed ML system.

Dataset licensing is a multifaceted domain that intersects tech-
nology, ethics, and law. Understanding these intricacies becomes
paramount for anyone building datasets during data engineering as
the world evolves.

5.11 Conclusion

Data is the fundamental building block of Al systems. Without qual-
ity data, even the most advanced machine learning algorithms will
fail. Data engineering encompasses the end-to-end process of collect-
ing, storing, processing, and managing data to fuel the development of
machine learning models. It begins with clearly defining the core prob-
lem and objectives, which guides effective data collection. Data can be
sourced from diverse means, including existing datasets, web scrap-
ing, crowdsourcing, and synthetic data generation. Each approach in-
volves tradeoffs between cost, speed, privacy, and specificity. Once
datais collected, thoughtful labeling through manual or Al-assisted an-
notation enables the creation of high-quality training datasets. Proper
storage in databases, warehouses, or lakes facilitates easy access and
analysis. Metadata provides contextual details about the data. Data
processing transforms raw data into a clean, consistent format for ma-
chine learning model development. Throughout this pipeline, trans-
parency through documentation and provenance tracking is crucial for
ethics, auditability, and reproducibility. Data licensing protocols also
govern legal data access and use. Key challenges in data engineering
include privacy risks, representation gaps, legal restrictions around
proprietary data, and the need to balance competing constraints like
speed versus quality. By thoughtfully engineering high-quality train-
ing data, machine learning practitioners can develop accurate, robust,
and responsible Al systems, including embedded and TinyML appli-
cations.

5.12 Resources

Here is a curated list of resources to support students and instructors
in their learning and teaching journeys. We are continuously working
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on expanding this collection and will add new exercises soon.

1 Slides

These slides are a valuable tool for instructors to deliver lectures
and for students to review the material at their own pace. We
encourage students and instructors to leverage these slides to
improve their understanding and facilitate effective knowledge
transfer.

¢ Data Engineering: Overview.

* Feature engineering.

¢ Data Standards: Speech Commands.

¢ Crowdsourcing Data for the Long Tail.

* Reusing and Adapting Existing Datasets.
* Responsible Data Collection.

¢ Data Anomaly Detection:
— Anomaly Detection: Overview.
— Anomaly Detection: Challenges.
— Anomaly Detection: Datasets.

— Anomaly Detection: using Autoencoders.

! Videos

» Coming soon.

O Exercises

To reinforce the concepts covered in this chapter, we have curated
a set of exercises that challenge students to apply their knowl-
edge and deepen their understanding.

e Exercise 4
e Exercise 5

e Exercise 6



https://docs.google.com/presentation/d/1jlIfD6RtQWG8314jCAu1qdnG7YyESy60Yt5-zXhEsVA/edit#slide=id.g202a7c05d1a_0_0
https://docs.google.com/presentation/d/1AIM1H-GfvjNPHQw9urxJz3vtMgb_9kizfthbymISPR4/edit#slide=id.g202a83498d1_0_0
https://docs.google.com/presentation/d/1qDoHc7yzZ2lEha9NTMZ07Ls4tkIz-1f7kUYRlvjzsI4/edit?usp=drive_link&resourcekey=0-ol4Oqk_y706P_zIB5mbu7Q
https://docs.google.com/presentation/d/1d3KUit64L-4dXecCNBpikCxx7VO0xIJ13r9v1Ad22S4/edit#slide=id.ga4ca29c69e_0_179
https://docs.google.com/presentation/d/1mHecDoCYHQD9nWSRYCrXXG0IOp9wYQk-fbxhoNIsGMY/edit#slide=id.ga4ca29c69e_0_206
https://docs.google.com/presentation/d/1vcmuhLVNFT2asKSCSGh_Ix9ht0mJZxMii8MufEMQhFA/edit?resourcekey=0-_pYLcW5aF3p3Bvud0PPQNg#slide=id.ga4ca29c69e_0_195
https://docs.google.com/presentation/d/1R8A_5zKDZDZOdAb1XF9ovIOUTLWSIuFWDs20-avtxbM/edit?resourcekey=0-pklEaPv8PmLQ3ZzRYgRNxw#slide=id.g94db9f9f78_0_2
https://docs.google.com/presentation/d/1JZxx2kLaO1a8O6z6rRVFpK0DN-8VMkaSrNnmk_VGbI4/edit#slide=id.g53eb988857_0_91
https://docs.google.com/presentation/d/1wPDhp4RxVrOonp6pU0Capk0LWXZOGZ3x9BzW_VjpTQw/edit?resourcekey=0-y6wKAnuxrLWqhleq9ruLOA#slide=id.g53eb988857_0_91
https://docs.google.com/presentation/d/1Q4h7XrayNRIP0r52Hlk5VjxRcli-GY2xmyZ53nCd6CI/edit#slide=id.g53eb988857_0_91
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e Exercise 7

e Exercise 8
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Chapter 6

Al Frameworks

Training . Inffecence

This chapter explores the landscape of Al frameworks that serve as the
foundation for developing machine learning systems. AI frameworks
provide the tools, libraries, and environments to design, train, and de-
ploy machine learning models. We explore the evolutionary trajectory
of these frameworks, dissect the workings of TensorFlow, and provide
insights into the core components and advanced features that define
these frameworks.

Furthermore, we investigate the specialization of frameworks tai-
lored to specific needs, the emergence of frameworks specifically de-
signed for embedded Al, and the criteria for selecting the most suitable
framework for your project. This exploration will be rounded off by a
glimpse into the future trends expected to shape the landscape of ML

Figure 6.1: DALL-E 3 Prompt:
Illustration in a rectangular for-
mat, designed for a professional
textbook, where the content spans
the entire width. The vibrant chart
represents training and inference
frameworks for ML. Icons for Ten-
sorFlow, Keras, PyTorch, ONNX,
and TensorRT are spread out, fill-
ing the entire horizontal space,
and aligned vertically. Each icon
is accompanied by brief annota-
tions detailing their features. The
lively colors like blues, greens,
and oranges highlight the icons
and sections against a soft gra-
dient background. The distinc-
tion between training and infer-
ence frameworks is accentuated
through color-coded sections, with
clean lines and modern typogra-
phy maintaining clarity and fo-
cus.



6.1. Overview 122

frameworks in the coming years.

@ Learning Objectives

* Understand the evolution and capabilities of major ma-
chine learning frameworks. This includes graph execution
models, programming paradigms, hardware acceleration
support, and how they have expanded over time.

¢ Learn frameworks’ core components and functionality,
such as computational graphs, data pipelines, optimization
algorithms, training loops, etc., that enable efficient model
building.

¢ Compare frameworks across different environments, such
as cloud, edge, and TinyML. Learn how frameworks spe-
cialize based on computational constraints and hardware.

¢ Dive deeper into embedded and TinyML-focused frame-
works like TensorFlow Lite Micro, CMSIS-NN, TinyEngine,
etc., and how they optimize for microcontrollers.

* When choosing a framework, explore model conversion
and deployment considerations, including latency, mem-
ory usage, and hardware support.

¢ Evaluate key factors in selecting the right framework, like
performance, hardware compatibility, community support,
ease of use, etc., based on the specific project needs and
constraints.

* Understand the limitations of current frameworks and po-
tential future trends, such as using ML to improve frame-
works, decomposed ML systems, and high-performance
compilers.

6.1 Overview

Machine learning frameworks provide the tools and infrastructure
to efficiently build, train, and deploy machine learning models. In
this chapter, we will explore the evolution and key capabilities of
major frameworks like TensorFlow (TF), PyTorch, and specialized
frameworks for embedded devices. We will dive into the components
like computational graphs, optimization algorithms, hardware ac-


https://www.tensorflow.org/
https://pytorch.org/
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celeration, and more that enable developers to construct performant
models quickly. Understanding these frameworks is essential to
leverage the power of deep learning across the spectrum from cloud
to edge devices.

ML frameworks handle much of the complexity of model develop-
ment through high-level APIs and domain-specific languages that al-
low practitioners to quickly construct models by combining pre-made
components and abstractions. For example, frameworks like Tensor-
Flow and PyTorch provide Python APIs to define neural network ar-
chitectures using layers, optimizers, datasets, and more. This enables
rapid iteration compared to coding every model detail from scratch.

A key capability offered by these frameworks is distributed train-
ing engines that can scale model training across clusters of GPUs and
TPUs. This makes it feasible to train state-of-the-art models with bil-
lions or trillions of parameters on vast datasets. Frameworks also inte-
grate with specialized hardware like NVIDIA GPUs to further acceler-
ate training via optimizations like parallelization and efficient matrix
operations.

In addition, frameworks simplify deploying finished models into
production through tools like TensorFlow Serving for scalable model
serving and TensorFlow Lite for optimization on mobile and edge de-
vices. Other valuable capabilities include visualization, model opti-
mization techniques like quantization and pruning, and monitoring
metrics during training.

Leading open-source frameworks like TensorFlow, PyTorch, and
MXNet power much of Al research and development today. Commer-
cial offerings like Amazon SageMaker and Microsoft Azure Machine
Learning integrate these open source frameworks with proprietary
capabilities and enterprise tools.

Machine learning engineers and practitioners leverage these robust
frameworks to focus on high-value tasks like model architecture, fea-
ture engineering, and hyperparameter tuning instead of infrastructure.
The goal is to build and deploy performant models that solve real-
world problems efficiently.

In this chapter, we will explore today’s leading cloud frameworks
and how they have adapted models and tools specifically for embed-
ded and edge deployment. We will compare programming models,
supported hardware, optimization capabilities, and more to fully un-
derstand how frameworks enable scalable machine learning from the
cloud to the edge.


https://www.tensorflow.org/tfx/guide/serving
https://www.tensorflow.org/lite
https://mxnet.apache.org/versions/1.9.1/
https://aws.amazon.com/pm/sagemaker/
https://azure.microsoft.com/en-us/free/machine-learning/search/?ef_id=_k_CjwKCAjws9ipBhB1EiwAccEi1JVOThls797Sj3Li96_GYjoJQDx_EWaXNsDaEWeFbIaRkESUCkq64xoCSmwQAvD_BwE_k_&OCID=AIDcmm5edswduu_SEM__k_CjwKCAjws9ipBhB1EiwAccEi1JVOThls797Sj3Li96_GYjoJQDx_EWaXNsDaEWeFbIaRkESUCkq64xoCSmwQAvD_BwE_k_&gad=1&gclid=CjwKCAjws9ipBhB1EiwAccEi1JVOThls797Sj3Li96_GYjoJQDx_EWaXNsDaEWeFbIaRkESUCkq64xoCSmwQAvD_BwE
https://azure.microsoft.com/en-us/free/machine-learning/search/?ef_id=_k_CjwKCAjws9ipBhB1EiwAccEi1JVOThls797Sj3Li96_GYjoJQDx_EWaXNsDaEWeFbIaRkESUCkq64xoCSmwQAvD_BwE_k_&OCID=AIDcmm5edswduu_SEM__k_CjwKCAjws9ipBhB1EiwAccEi1JVOThls797Sj3Li96_GYjoJQDx_EWaXNsDaEWeFbIaRkESUCkq64xoCSmwQAvD_BwE_k_&gad=1&gclid=CjwKCAjws9ipBhB1EiwAccEi1JVOThls797Sj3Li96_GYjoJQDx_EWaXNsDaEWeFbIaRkESUCkq64xoCSmwQAvD_BwE
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6.2 Framework Evolution

Machine learning frameworks have evolved significantly to meet the
diverse needs of machine learning practitioners and advancements
in Al techniques. A few decades ago, building and training machine
learning models required extensive low-level coding and infrastruc-
ture. Alongside the need for low-level coding, early neural network
research was constrained by insufficient data and computing power.
However, machine learning frameworks have evolved considerably
over the past decade to meet the expanding needs of practitioners
and rapid advances in deep learning techniques. The release of
large datasets like ImageNet (Deng et al. 2009) and advancements in
parallel GPU computing unlocked the potential for far deeper neural
networks.

The first ML frameworks, Theano by Team et al. (2016) and Caffe by
Y. Jia et al. (2014), were developed by academic institutions. Theano
was created by the Montreal Institute for Learning Algorithms, while
Caffe was developed by the Berkeley Vision and Learning Center.
Amid growing interest in deep learning due to state-of-the-art per-
formance of AlexNet Krizhevsky, Sutskever, and Hinton (2012) on
the ImageNet dataset, private companies and individuals began
developing ML frameworks, resulting in frameworks such as Keras
by Chollet (2018), Chainer by Tokui et al. (2019), TensorFlow from
Google (Yu et al. 2018), CNTK by Microsoft (Seide and Agarwal 2016),
and PyTorch by Facebook (Ansel et al. 2024).

Many of these ML frameworks can be divided into high-level
vs. low-level frameworks and static vs. dynamic computational
graph frameworks. High-level frameworks provide a higher level
of abstraction than low-level frameworks. High-level frameworks
have pre-built functions and modules for common ML tasks, such as
creating, training, and evaluating common ML models, preprocessing
data, engineering features, and visualizing data, which low-level
frameworks do not have. Thus, high-level frameworks may be easier
to use but are less customizable than low-level frameworks (i.e., users
of low-level frameworks can define custom layers, loss functions,
optimization algorithms, etc.). Examples of high-level frameworks
include TensorFlow /Keras and PyTorch. Examples of low-level ML
frameworks include TensorFlow with low-level APIs, Theano, Caffe,
Chainer, and CNTK.

Frameworks like Theano and Caffe used static computational
graphs, which required defining the full model architecture upfront,
thus limiting flexibility. In contract, dynamic graphs are constructed
on the fly for more iterative development. Around 2016, frameworks


https://www.image-net.org/
https://pypi.org/project/Theano/#:~:text=Theano
https://caffe.berkeleyvision.org/
https://keras.io/
https://chainer.org/
https://learn.microsoft.com/en-us/cognitive-toolkit/
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like PyTorch and TensorFlow 2.0 began adopting dynamic graphs,
providing greater flexibility for model development. We will discuss
these concepts and details later in the Al Training section.

The development of these frameworks facilitated an explosion in
model size and complexity over time—from early multilayer percep-
trons and convolutional networks to modern transformers with bil-
lions or trillions of parameters. In 2016, ResNet models by K. He et
al. (2016) achieved record ImageNet accuracy with over 150 layers
and 25 million parameters. Then, in 2020, the GPT-3 language model
from OpenAl (Brown et al. 2020) pushed parameters to an astonish-
ing 175 billion using model parallelism in frameworks to train across
thousands of GPUs and TPUs.

Each generation of frameworks unlocked new capabilities that pow-
ered advancement:

¢ Theano and TensorFlow (2015) introduced computational graphs
and automatic differentiation to simplify model building.

e CNTK (2016) pioneered efficient distributed training by combin-
ing model and data parallelism.

e PyTorch (2016) provided imperative programming and dynamic
graphs for flexible experimentation.

¢ TensorFlow 2.0 (2019) defaulted eager execution for intuitiveness
and debugging.

¢ TensorFlow Graphics (2020) added 3D data structures to handle
point clouds and meshes.

In recent years, the landscape of machine learning frameworks
has significantly consolidated. Figure 6.3 illustrates this convergence,
showing that TensorFlow and PyTorch have become the overwhelm-
ingly dominant ML frameworks, collectively representing more than
95% of ML frameworks used in research and production. While both
frameworks have risen to prominence, they have distinct characteris-
tics. Figure 6.2 draws a contrast between the attributes of TensorFlow
and PyTorch, helping to explain their complementary dominance in
the field.

A one-size-fits-all approach does not work well across the spectrum
from cloud to tiny edge devices. Different frameworks represent vari-
ous philosophies around graph execution, declarative versus impera-
tive APIs, and more. Declaratives define what the program should do,
while imperatives focus on how it should be done step-by-step. For
instance, TensorFlow uses graph execution and declarative-style mod-
eling, while PyTorch adopts eager execution and imperative modeling



Figure 6.2: PyTorch vs. Tensor-
Flow: Features and Functions.
Source: K&C

Figure 6.3: Popularity of ML
frameworks in the United
States as measured by Google
web searches. Source: Google.
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T TensorFlow

Written in C++ and is, as a result, very fast and
efficient.

Feature rich; TensarFlow can be used for trai
data as well as for inference.

Very good documentation; TensorFlow has many
users and an big community which has led to
strang documentation.

High popularity; TensorFlow has established itself as
the most used ML library over a number of years now.

Many APIs available; TensorFlow is a library with a
rich choice of easy to use APIs.

Supports JavaScri] ensorFlow supports JavaScript,
C++ and Java in addition to Python.

For Mobile & laT, inferences can be performed with
TensarFlow Lite on mobile devices such as Android or
i0S, as well as on Edge TPU or Raspberry Pi.

Interest over time

@® TensorFlow @ PyTorch

® Microsoft Cognitive Toolkit

O PyTorch

Written in Python making it more accessible and
flattening the learning curve. However, the C++ core
means PyTorch is still quite fast.

Very flexible; as data size can also be changed during
data training.

Popular at research level; Pytorch was by far the most
talked about ML library at CYPR, one of the most
important camputer vision canferences.

Rapid growth in popularity in bath business and
research use cases.

Many libraries available; PyTorch is composed of
multiple libraries and platforms.

Python-based; PyTorch allows develapers to write
cade in Python

PyTorch API; the PyTorch APl is often preferred as it
is better designed - plus TensorFlow has historically
changed their API frequently.

Google Trends

Theano @ Caffe

Average Jan 1,2007



https://www.google.com/url?sa=i&url=https%3A%2F%2Fkruschecompany.com%2Fpytorch-vs-tensorflow%2F&psig=AOvVaw1-DSFxXYprQmYH7Z4Nk6Tk&ust=1722533288351000&source=images&cd=vfe&opi=89978449&ved=0CBEQjRxqFwoTCPDhst7m0YcDFQAAAAAdAAAAABAg
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for more Pythonic flexibility. Each approach carries tradeoffs which
we will discuss in Section 6.3.7.

Today’s advanced frameworks enable practitioners to develop and
deploy increasingly complex models - a key driver of innovation in
the AIfield. These frameworks continue to evolve and expand their ca-
pabilities for the next generation of machine learning. To understand
how these systems continue to evolve, we will dive deeper into Tensor-
Flow as an example of how the framework grew in complexity over
time.

6.3 Deep Dive into TensorFlow

TensorFlow was developed by the Google Brain team and was re-
leased as an open-source software library on November 9, 2015. It was
designed for numerical computation using data flow graphs and has
since become popular for a wide range of machine learning and deep
learning applications.

TensorFlow is a training and inference framework that provides
built-in functionality to handle everything from model creation and
training to deployment, as shown in Figure 6.4. Since its initial
development, the TensorFlow ecosystem has grown to include many
different “varieties” of TensorFlow, each intended to allow users to
support ML on different platforms. In this section, we will mainly
discuss only the core package.

6.3.1 TF Ecosystem

1. TensorFlow Core: primary package that most developers engage
with. It provides a comprehensive, flexible platform for defining,
training, and deploying machine learning models. It includes
tf keras as its high-level APL

2. TensorFlow Lite: designed for deploying lightweight models on
mobile, embedded, and edge devices. It offers tools to convert
TensorFlow models to a more compact format suitable for
limited-resource devices and provides optimized pre-trained
models for mobile.

3. TensorFlow Lite Micro: designed for running machine learning
models on microcontrollers with minimal resources. It operates
without the need for operating system support, standard C or
C++ libraries, or dynamic memory allocation, using only a few
kilobytes of memory.


https://www.tensorflow.org/tutorials
https://www.tensorflow.org/guide/keras
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite/microcontrollers
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4. TensorFlow,js: JavaScript library that allows training and deploy-
ment of machine learning models directly in the browser or on
Node js. It also provides tools for porting pre-trained TensorFlow
models to the browser-friendly format.

5. TensorFlow on Edge Devices (Coral): platform of hardware
components and software tools from Google that allows the
execution of TensorFlow models on edge devices, leveraging
Edge TPUs for acceleration.

6. TensorFlow Federated (TFF): framework for machine learning
and other computations on decentralized data. TFF facilitates
tederated learning, allowing model training across many devices
without centralizing the data.

7. TensorFlow Graphics: library for using TensorFlow to carry out
graphics-related tasks, including 3D shapes and point clouds
processing, using deep learning.

8. TensorFlow Hub: repository of reusable machine learning model
components to allow developers to reuse pre-trained model com-
ponents, facilitating transfer learning and model composition.

9. TensorFlow Serving: framework designed for serving and de-
ploying machine learning models for inference in production en-
vironments. It provides tools for versioning and dynamically up-
dating deployed models without service interruption.

10. TensorFlow Extended (TFX): end-to-end platform designed to de-
ploy and manage machine learning pipelines in production set-
tings. TFX encompasses data validation, preprocessing, model
training, validation, and serving components.

TensorFlow was developed to address the limitations of DistBelief
(Yuetal. 2018)—the framework in use at Google from 2011 to 2015—by
providing flexibility along three axes: 1) defining new layers, 2) refin-
ing training algorithms, and 3) defining new training algorithms. To
understand what limitations in DistBelief led to the development of
TensorFlow, we will first give a brief overview of the Parameter Server
Architecture that DistBelief employed (Dean et al. 2012).

The Parameter Server (PS) architecture is a popular design for dis-
tributing the training of machine learning models, especially deep neu-
ral networks, across multiple machines. The fundamental idea is to
separate the storage and management of model parameters from the
computation used to update these parameters. Typically, parameter


https://www.tensorflow.org/js
https://developers.googleblog.com/2019/03/introducing-coral-our-platform-for.html
https://www.tensorflow.org/federated
https://www.tensorflow.org/graphics
https://www.tensorflow.org/hub
https://www.tensorflow.org/tfx/guide/serving
https://www.tensorflow.org/tfx
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servers handle the storage and management of model parameters, par-
titioning them across multiple servers. Worker processes perform the
computational tasks, including data processing and computation of
gradients, which are then sent back to the parameter servers for updat-
ing.

Storage: The stateful parameter server processes handled the stor-
age and management of model parameters. Given the large scale of
models and the system’s distributed nature, these parameters were
shared across multiple parameter servers. Each server maintained a
portion of the model parameters, making it “stateful” as it had to main-
tain and manage this state across the training process.

Computation: The worker processes, which could be run in paral-
lel, were stateless and purely computational. They processed data and
computed gradients without maintaining any state or long-term mem-
ory (M. Li et al. 2014). Workers did not retain information between
different tasks. Instead, they periodically communicated with the pa-
rameter servers to retrieve the latest parameters and send back com-
puted gradients.

O Caution 9: TensorFlow Core

Let’s comprehensively understand core machine learning algo-
rithms using TensorFlow and their practical applications in data
analysis and predictive modeling. We will start with linear re-
gression to predict survival rates from the Titanic dataset. Then,
using TensorFlow, we will construct classifiers to identify differ-
ent species of flowers based on their attributes. Next, we will

Figure 6.4: Architecture
overview of TensorFlow 2.0.
Source: Tensorflow.


https://blog.tensorflow.org/2019/01/whats-coming-in-tensorflow-2-0.html
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use the K-Means algorithm and its application in segmenting
datasets into cohesive clusters. Finally, we will apply hidden
Markov models (HMM) to foresee weather patterns.

CO Open in Colab

O Caution 10: TensorFlow Lite

Here, we will see how to build a miniature machine-learning
model for microcontrollers. We will build a mini neural network
that is streamlined to learn from data even with limited resources
and optimized for deployment by shrinking our model for effi-
cient use on microcontrollers. TensorFlow Lite, a powerful tech-
nology derived from TensorFlow, shrinks models for tiny devices
and helps enable on-device features like image recognition in
smart devices. It is used in edge computing to allow for faster
analysis and decisions in devices processing data locally.

CO Open in Colab

DistBelief and its architecture defined above were crucial in enabling
distributed deep learning at Google but also introduced limitations
that motivated the development of TensorFlow:

6.3.2 Static Computation Graph

Model parameters are distributed across various parameter servers in
the parameter server architecture. Since DistBelief was primarily de-
signed for the neural network paradigm, parameters corresponded to
a fixed neural network structure. If the computation graph were dy-
namic, the distribution and coordination of parameters would become
significantly more complicated. For example, a change in the graph
might require the initialization of new parameters or the removal of ex-
isting ones, complicating the management and synchronization tasks
of the parameter servers. This made it harder to implement models
outside the neural framework or models that required dynamic com-
putation graphs.

TensorFlow was designed as a more general computation framework
that expresses computation as a data flow graph. This allows for a
wider variety of machine learning models and algorithms outside of
neural networks and provides flexibility in refining models.


https://colab.research.google.com/drive/15Cyy2H7nT40sGR7TBN5wBvgTd57mVKay#scrollTo=IEeIRxlbx0wY
https://colab.research.google.com/github/Mjrovai/UNIFEI-IESTI01-TinyML-2022.1/blob/main/00_Curse_Folder/2_Applications_Deploy/Class_16/TFLite-Micro-Hello-World/train_TFL_Micro_hello_world_model.ipynb
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6.3.3 Usability & Deployment

The parameter server model delineates roles (worker nodes and pa-
rameter servers) and is optimized for data center deployments, which
might only be optimal for some use cases. For instance, this division
introduces overheads or complexities on edge devices or in other non-
data center environments.

TensorFlow was built to run on multiple platforms, from mobile de-
vices and edge devices to cloud infrastructure. It also aimed to be
lighter and developer-friendly and to provide ease of use between local
and distributed training.

6.3.4 Architecture Design

Rather than using the parameter server architecture, TensorFlow de-
ploys tasks across a cluster. These tasks are named processes that can
communicate over a network, and each can execute TensorFlow’s core
construct, the dataflow graph, and interface with various computing
devices (like CPUs or GPUs). This graph is a directed representation
where nodes symbolize computational operations, and edges depict
the tensors (data) flowing between these operations.

Despite the absence of traditional parameter servers, some “PS
tasks” still store and manage parameters reminiscent of parameter
servers in other systems. The remaining tasks, which usually han-
dle computation, data processing, and gradient calculations, are
referred to as “worker tasks.” TensorFlow’s PS tasks can execute
any computation representable by the dataflow graph, meaning they
aren’t just limited to parameter storage, and the computation can be
distributed. This capability makes them significantly more versatile
and gives users the power to program the PS tasks using the standard
TensorFlow interface, the same one they’d use to define their models.
As mentioned above, dataflow graphs’ structure also makes them
inherently good for parallelism, allowing for the processing of large
datasets.

6.3.5 Built-in Functionality & Keras

TensorFlow includes libraries to help users develop and deploy more
use-case-specific models, and since this framework is open-source, this
list continues to grow. These libraries address the entire ML develop-
ment lifecycle: data preparation, model building, deployment, and re-
sponsible AL

One of TensorFlow’s biggest advantages is its integration with Keras,
though, as we will cover in the next section, Pytorch recently added
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a Keras integration. Keras is another ML framework built to be ex-
tremely user-friendly and, as a result, has a high level of abstraction.
We will cover Keras in more depth later in this chapter. However,
when discussing its integration with TensorFlow, it was important to
note that it was originally built to be backend-agnostic. This means
users could abstract away these complexities, offering a cleaner, more
intuitive way to define and train models without worrying about com-
patibility issues with different backends. TensorFlow users had some
complaints about the usability and readability of TensorFlow’s AP, so
as TF gained prominence, it integrated Keras as its high-level API. This
integration offered major benefits to TensorFlow users since it intro-
duced more intuitive readability and portability of models while still
taking advantage of powerful backend features, Google support, and
infrastructure to deploy models on various platforms.

O Caution 11: Exploring Keras: Building, Training, and Evaluat-
ing Neural Networks

Here, we'll learn how to use Keras, a high-level neural network
AP]I, for model development and training. We will explore the
functional API for concise model building, understand loss and
metric classes for model evaluation, and use built-in optimizers
to update model parameters during training. Additionally, we’ll
discover how to define custom layers and metrics tailored to our
needs. Lastly, we’ll look into Keras’ training loops to streamline
the process of training neural networks on large datasets. This
knowledge will empower us to build and optimize neural net-
work models across various machine learning and artificial intel-
ligence applications.

O Open in Colab

6.3.6 Limitations and Challenges

TensorFlow is one of the most popular deep learning frameworks, but
it has faced criticisms and weaknesses, primarily related to usability
and resource usage. While advantageous, the rapid pace of updates
through its support from Google has sometimes led to backward com-
patibility issues, deprecated functions, and shifting documentation.
Additionally, even with the Keras implementation, TensorFlow’s syn-
tax and learning curve can be difficult for new users. Another major
critique of TensorFlow is its high overhead and memory consumption
due to the range of built-in libraries and support. While pared-down
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versions can address some of these concerns, they may still be limited
in resource-constrained environments.

6.3.7 PyTorch vs. TensorFlow

PyTorch and TensorFlow have established themselves as frontrunners
in the industry. Both frameworks offer robust functionalities but differ
in design philosophies, ease of use, ecosystem, and deployment capa-
bilities.

Design Philosophy and Programming Paradigm: PyTorch uses a
dynamic computational graph termed eager execution. This makes
it intuitive and facilitates debugging since operations are executed
immediately and can be inspected on the fly. In comparison, earlier
versions of TensorFlow were centered around a static computational
graph, which required the graph’s complete definition before ex-
ecution. However, TensorFlow 2.0 introduced eager execution by
default, making it more aligned with PyTorch. PyTorch’s dynamic
nature and Python-based approach have enabled its simplicity and
flexibility, particularly for rapid prototyping. TensorFlow’s static
graph approach in its earlier versions had a steeper learning curve;
the introduction of TensorFlow 2.0, with its Keras integration as the
high-level API, has significantly simplified the development process.

Deployment: PyTorch is heavily favored in research environments,
but deploying PyTorch models in production settings has tradition-
ally been challenging. However, deployment has become more fea-
sible with the introduction of TorchScript, the TorchServe tool, and Py-
Torch Mobile. TensorFlow stands out for its strong scalability and de-
ployment capabilities, particularly on embedded and mobile platforms
with TensorFlow Lite. TensorFlow Serving and TensorFlow.js further
facilitate deployment in various environments, thus giving it a broader
reach in the ecosystem.

Performance: Both frameworks offer efficient hardware acceleration
for their operations. However, TensorFlow has a slightly more robust
optimization workflow, such as the XLA (Accelerated Linear Algebra)
compiler, which can further boost performance. Its static computa-
tional graph was also advantageous for certain optimizations in the
early versions.

Ecosystem: PyTorch has a growing ecosystem with tools like Torch-
Serve for serving models and libraries like TorchVision, TorchText, and
TorchAudio for specific domains. As we mentioned earlier, Tensor-
Flow has a broad and mature ecosystem. TensorFlow Extended (TFX)
provides an end-to-end platform for deploying production machine
learning pipelines. Other tools and libraries include TensorFlow Lite,
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TensorFlow Lite Micro, TensorFlow.js, TensorFlow Hub, and Tensor-
Flow Serving. Table 6.1 provides a comparative analysis:

Table 6.1: Comparison of PyTorch and TensorFlow.

Aspect Pytorch TensorFlow

Design Dynamic Static computational graph (early

Philoso-  computational versions); Eager execution in

phy graph (eager TensorFlow 2.0
execution)

DeploymentfIraditionally Scalable, especially on embedded
challenging; platforms with TensorFlow Lite
Improved with
TorchScript &
TorchServe

Performanceifficient GPU Robust optimization with XLA

& Opti- acceleration compiler

mization

Ecosystem TorchServe, TensorFlow Extended (TFX),
TorchVision, TensorFlow Lite, TensorFlow Lite
TorchText, Micro TensorFlow.js, TensorFlow
TorchAudio, Hub, TensorFlow Serving
PyTorch Mobile

Ease of Preferred for its Initially steep learning curve;

Use Pythonic approach ~ Simplified with Keras in
and rapid TensorFlow 2.0
prototyping

6.4 Basic Framework Components

Having introduced the popular machine learning frameworks and pro-
vided a high-level comparison, this section will introduce you to the
core functionalities that form the fabric of these frameworks. It will
cover the special structure called tensors, which these frameworks use
to handle complex multi-dimensional data more easily. You will also
learn how these frameworks represent different types of neural net-
work architectures and their required operations through computa-
tional graphs. Additionally, you will see how they offer tools that make
the development of machine learning models more abstract and effi-
cient, such as data loaders, implemented loss optimization algorithms,
efficient differentiation techniques, and the ability to accelerate your
training process on hardware accelerators.
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6.4.1 Tensor data structures

As shown in the figure, vectors can be represented as a stack of num-
bers in a 1-dimensional array. Matrices follow the same idea, and one
can think of them as many vectors stacked on each other, making them
2 dimensional. Higher dimensional tensors work the same way. A 3-
dimensional tensor, as illustrated in Figure 6.5, is simply a set of ma-
trices stacked on each other in another direction. Therefore, vectors
and matrices can be considered special cases of tensors with 1D and
2D dimensions, respectively.

Figure 6.5: Visualization of

Tensor Data Structure.
L]

Rank 0 Rank 1 Rank 2 Rank 3

Tensors offer a flexible structure that can represent data in higher di-
mensions. Figure 6.6 illustrates how this concept applies to image data.
As shown in the figure, images are not represented by just one matrix
of pixel values. Instead, they typically have three channels, where each
channel is a matrix containing pixel values that represent the intensity
of red, green, or blue. Together, these channels create a colored image.
Without tensors, storing all this information from multiple matrices
can be complex. However, as Figure 6.6 illustrates, tensors make it
easy to contain image data in a single 3-dimensional structure, with
each number representing a certain color value at a specific location in
the image.

You don't have to stop there. If we wanted to store a series of im-
ages, we could use a 4-dimensional tensor, where the new dimension
represents different images. This means you are storing multiple im-
ages, each having three matrices that represent the three color channels.
This gives you an idea of the usefulness of tensors when dealing with
multi-dimensional data efficiently.

Tensors also have a unique attribute that enables frameworks to auto-
matically compute gradients, simplifying the implementation of com-
plex models and optimization algorithms. In machine learning, as dis-
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’
Figure 6.6: Visualization of col- 3 Color Channels // ’
ored image structure that can
be easily stored as a 3D Tensor.
Credit: Niklas Lang
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cussed in Chapter 3, backpropagation requires taking the derivative
of equations. One of the key features of tensors in PyTorch and Ten-
sorFlow is their ability to track computations and calculate gradients.
This is crucial for backpropagation in neural networks. For example, in
PyTorch, you can use the requires_grad attribute, which allows you
to automatically compute and store gradients during the backward
pass, facilitating the optimization process. Similarly, in TensorFlow,
tf.GradientTape records operations for automatic differentiation.

Consider this simple mathematical equation that you want to differ-
entiate. Mathematically, you can compute the gradient in the follow-
ing way:

Given:

y=a?

The derivative of y with respect to x is:

When z = 2:

The gradient of y with respect to z, at x = 2, is 4.
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A powerful feature of tensors in PyTorch and TensorFlow is their
ability to easily compute derivatives (gradients). Here are the corre-
sponding code examples in PyTorch and TensorFlow:

6.4.2 PyTorch

import torch

# Create a tensor with gradient tracking
x = torch.tensor(2.0, requires_grad=True)

# Define a simple function
y=x**2

# Compute the gradient
y.backward ()

# Print the gradient
print(x.grad)

# Output
tensor (4.0)

6.4.3 TensorFlow

import tensorflow as tf

# Create a tensor with gradient tracking
x = tf.Variable(2.0)

# Define a simple function
with tf.GradientTape() as tape:
y=x**2

# Compute the gradient
grad = tape.gradient(y, x)

# Print the gradient
print(grad)
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# Output
tf.Tensor(4.0, shape=(), dtype=float32)

This automatic differentiation is a powerful feature of tensors
in frameworks like PyTorch and TensorFlow, making it easier to
implement and optimize complex machine learning models.

6.4.4 Computational graphs

6.4.4.1 Graph Definition

Computational graphs are a key component of deep learning frame-
works like TensorFlow and PyTorch. They allow us to express com-
plex neural network architectures efficiently and differently. A compu-
tational graph consists of a directed acyclic graph (DAG) where each
node represents an operation or variable, and edges represent data de-
pendencies between them.

It is important to differentiate computational graphs from neural
network diagrams, such as those for multilayer perceptrons (MLPs),
which depict nodes and layers. Neural network diagrams, as depicted
in Chapter 3, visualize the architecture and flow of data through nodes
and layers, providing an intuitive understanding of the model’s struc-
ture. In contrast, computational graphs provide a low-level representa-
tion of the underlying mathematical operations and data dependencies
required to implement and train these networks.

For example, a node might represent a matrix multiplication opera-
tion, taking two input matrices (or tensors) and producing an output
matrix (or tensor). To visualize this, consider the simple example in
Figure 6.7. The directed acyclic graph computes z = x x y, where each
variable is just numbers.

Frameworks like TensorFlow and PyTorch create computational
graphs to implement the architectures of neural networks that we
typically represent with diagrams. When you define a neural network
layer in code (e.g., a dense layer in TensorFlow), the framework
constructs a computational graph that includes all the necessary
operations (such as matrix multiplication, addition, and activation
functions) and their data dependencies. This graph enables the
framework to efficiently manage the flow of data, optimize the
execution of operations, and automatically compute gradients for
training. Underneath the hood, the computational graphs represent
abstractions for common layers like convolutional, pooling, recurrent,
and dense layers, with data including activations, weights, and biases
represented in tensors. This representation allows for efficient compu-
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tation, leveraging the structure of the graph to parallelize operations
and apply optimizations.

Some common layers that computational graphs might implement
include convolutional layers, attention layers, recurrent layers, and
dense layers. Layers serve as higher-level abstractions that define
specific computations on top of the basic operations represented in
the graph. For example, a Dense layer performs matrix multiplication
and addition between input, weight, and bias tensors. It is important
to note that a layer operates on tensors as inputs and outputs; the layer
itself is not a tensor. Some key differences between layers and tensors
are:

® Layers contain states like weights and biases. Tensors are state-
less, just holding data.

e Layers can modify internal state during training. Tensors are
immutable/read-only.

* Layers are higher-level abstractions. Tensors are at a lower level
and directly represent data and math operations.

¢ Layers define fixed computation patterns. Tensors flow between
layers during execution.

® Layers are used indirectly when building models. Tensors flow
between layers during execution.

Figure 6.7: Basic example of a
computational graph.
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So, while tensors are a core data structure that layers consume and
produce, layers have additional functionality for defining parameter-
ized operations and training. While a layer configures tensor opera-
tions under the hood, the layer remains distinct from the tensor ob-
jects. The layer abstraction makes building and training neural net-
works much more intuitive. This abstraction enables developers to
build models by stacking these layers together without implementing
the layer logic. For example, calling tf.keras.layers.Conv2D in Ten-
sorFlow creates a convolutional layer. The framework handles comput-
ing the convolutions, managing parameters, etc. This simplifies model
development, allowing developers to focus on architecture rather than
low-level implementations. Layer abstractions use highly optimized
implementations for performance. They also enable portability, as the
same architecture can run on different hardware backends like GPUs
and TPUs.

In addition, computational graphs include activation functions
like ReLU, sigmoid, and tanh that are essential to neural networks,
and many frameworks provide these as standard abstractions. These
functions introduce non-linearities that enable models to approximate
complex functions. Frameworks provide these as simple, predefined
operations that can be used when constructing models, for example,
if nn.relu in TensorFlow. This abstraction enables flexibility, as de-
velopers can easily swap activation functions for tuning performance.
Predefined activations are also optimized by the framework for faster
execution.

In recent years, models like ResNets and MobileNets have emerged
as popular architectures, with current frameworks pre-packaging
these as computational graphs. Rather than worrying about the fine
details, developers can use them as a starting point, customizing
as needed by substituting layers. This simplifies and speeds up
model development, avoiding reinventing architectures from scratch.
Predefined models include well-tested, optimized implementations
that ensure good performance. Their modular design also enables
transferring learned features to new tasks via transfer learning. These
predefined architectures provide high-performance building blocks
to create robust models quickly.

These layer abstractions, activation functions, and predefined
architectures the frameworks provide constitute a computa-
tional graph. When a user defines a layer in a framework (e.g.,
tf.keras.layers.Dense()), the framework configures computa-
tional graph nodes and edges to represent that layer. The layer
parameters like weights and biases become variables in the graph.
The layer computations become operation nodes (such as the x and
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y in the figure above). When you call an activation function like
tf.nn.relu(), the framework adds a ReLU operation node to the
graph. Predefined architectures are just pre-configured subgraphs
that can be inserted into your model’s graph. Thus, model definition
via high-level abstractions creates a computational graph—the layers,
activations, and architectures we use become graph nodes and edges.

We implicitly construct a computational graph when defining a
neural network architecture in a framework. The framework uses this
graph to determine operations to run during training and inference.
Computational graphs bring several advantages over raw code, and
that’s one of the core functionalities that is offered by a good ML
framework:

Explicit representation of data flow and operations

Ability to optimize graph before execution

Automatic differentiation for training

¢ Language agnosticism - graph can be translated to run on GPUs,
TPUs, etc.

Portability - graph can be serialized, saved, and restored later

Computational graphs are the fundamental building blocks of ML
frameworks. Model definition via high-level abstractions creates a
computational graph—the layers, activations, and architectures we
use become graph nodes and edges. The framework compilers and
optimizers operate on this graph to generate executable code. The
abstractions provide a developer-friendly API for building computa-
tional graphs. Under the hood, it’s still graphs down! So, while you
may not directly manipulate graphs as a framework user, they enable
your high-level model specifications to be efficiently executed. The
abstractions simplify model-building, while computational graphs
make it possible.

6.4.4.2 Static vs. Dynamic Graphs

Deep learning frameworks have traditionally followed one of two ap-
proaches for expressing computational graphs.

Static graphs (declare-then-execute): With this model, the entire
computational graph must be defined upfront before running it. All
operations and data dependencies must be specified during the dec-
laration phase. TensorFlow originally followed this static approach -
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models were defined in a separate context, and then a session was cre-
ated to run them. The benefit of static graphs is they allow more aggres-
sive optimization since the framework can see the full graph. However,
it also tends to be less flexible for research and interactivity. Changes
to the graph require re-declaring the full model.

For example:

x = tf.placeholder(tf.float32)
y = tf.matmul(x, weights) + biases

In this example, x is a placeholder for input data, and y is the result of
a matrix multiplication operation followed by an addition. The model
is defined in this declaration phase, where all operations and variables
must be specified upfront.

Once the entire graph is defined, the framework compiles and opti-
mizes it. This means that the computational steps are set in stone, and
the framework can apply various optimizations to improve efficiency
and performance. When you later execute the graph, you provide the
actual input tensors, and the pre-defined operations are carried out in
the optimized sequence.

This approach is similar to building a blueprint where every detail
is planned before construction begins. While this allows for powerful
optimizations, it also means that any changes to the model require re-
defining the entire graph from scratch.

Dynamic graphs (define-by-run): Unlike declaring (all) first and
then executing, the graph is built dynamically as execution happens.
There is no separate declaration phase - operations execute immedi-
ately as defined. This style is imperative and flexible, facilitating ex-
perimentation.

PyTorch uses dynamic graphs, building the graph on the fly as ex-
ecution happens. For example, consider the following code snippet,
where the graph is built as the execution is taking place:

torch.randn(4,784)
torch.matmul (x, weights) + biases

< M
non

The above example does not have separate compile/build/run
phases. Ops define and execute immediately. With dynamic graphs,
the definition is intertwined with execution, providing a more intu-
itive, interactive workflow. However, the downside is that there is less
potential for optimization since the framework only sees the graph as
it is built. Figure 6.8 demonstrates the differences between a static and
dynamic computation graph.
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Static vs Dynamic Graphs

TensorFlow: Build graph once, then
run many times (static)

N, D, H = 64, 1000, 100
x = tf.placeholder(tf.floatd2, shape=(N, D))

PyTorch: Each forward pass defines
a new graph (dynamic)

import torch
from torch.autograd import Variable

¥, D_in, B, D_out = 64, 1000, 100, 10
x = Variable(torch.randn(N, D_in), requires_grad-False)
y = Variable(torch.randn(N, D_out), requires_grad=False)

h = tf.maximum(tf.zatmul(x, wl), 0) Build wl = Variable(torch.randn(D_in, ¥), requires_gradsTrue)
y_pred = tf.zatzul(h, w2) ull w2 = Variable(torch.randn(H, D_out), requires_gradeTrue)
diff = y prod - y graph

loss = tf.reduce_mean(tf.reduce_sum(diff *+ 2, axis=l))

learning_rate = le-6
grad_wl, grad_w2 = tf.gradients(loss, (w1, w2])

for t in range(500):
y_pred = x.mm(wl).clamp(min=0).ma(w2)
loss = (y_pred - y).pow(2).sus()

loarning_rate = lo-5

new_wl = wl.as: - learning_rate * grad_wl)
new_w2 = w2.as - learning_rate * grad_w2)
updates = tf.group(new_wl, new_w2)

if wl.grad: wl.grad.data.zero_()
if w2.grad: w2.grad.data.zero_()

with tf.Session() as sess: A e

sess.run(tf.global_variables_initializer())
values = {x: np.random.randn(N, D),
y: np.random.randn(¥, D),)

losses = []
for t in range(50): Run each
loss_val, _ = sess.rua({loss, updates], iteration

foed_dict=values)

wl.data -= learning rate * wl.grad.data
w2.data -= learning_rate * w2.grad.data

New graph each iteration

Recently, the distinction has blurred as frameworks adopt both
modes. TensorFlow 2.0 defaults to dynamic graph mode while letting
users work with static graphs when needed. Dynamic declaration
offers flexibility and ease of use, making frameworks more user-
friendly, while static graphs provide optimization benefits at the cost
of interactivity. The ideal framework balances these approaches. Ta-
ble 6.2 compares the pros and cons of static versus dynamic execution
graphs:

Table 6.2: Comparison between Static (Declare-then-execute) and Dy-
namic (Define-by-run) Execution Graphs, highlighting their
respective pros and cons.

Execution
Graph Pros Cons
Static (Declare- ¢ Enable graph ¢ Less flexible for

then-execute) optimizations by research and

seeing full iteration
model ahead of ¢ Changes require
time rebuilding graph
¢ Can export and ¢ Execution has
deploy frozen separate compile
graphs and run phases
e Graphis
packaged
independently

of code

Figure 6.8: Comparing static
and dynamic graphs. Source:
Dev
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Execution
Graph Pros Cons
Dynamic ¢ Intuitive * Harder to optimize
(Define-by- imperative style without full graph
run) like Python code ¢ Possible
¢ Interleave graph slowdowns from
build with graph building
execution during execution
¢ Easy to modify ¢ Can require more
graphs memory

* Debugging
seamlessly fits
workflow

6.4.5 Data Pipeline Tools

Computational graphs can only be as good as the data they learn from
and work on. Therefore, feeding training data efficiently is crucial for
optimizing deep neural network performance, though it is often over-
looked as one of the core functionalities. Many modern Al frameworks
provide specialized pipelines to ingest, process, and augment datasets
for model training.

6.4.5.1 Data Loaders

At the core of these pipelines are data loaders, which handle reading
training examples from sources like files, databases, and object storage.
Data loaders facilitate efficient data loading and preprocessing, crucial
for deep learning models. For instance, TensorFlow’s tf.data dataload-
ing pipeline is designed to manage this process. Depending on the
application, deep learning models require diverse data formats such
as CSV files or image folders. Some popular formats include:

* CSV: A versatile, simple format often used for tabular data.

TFRecord: TensorFlow’s proprietary format, optimized for per-
formance.

Parquet: Columnar storage, offering efficient data compression
and retrieval.

JPEG/PNG: Commonly used for image data.

WAV/MP3: Prevalent formats for audio data.


https://www.tensorflow.org/guide/data
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Data loaders batch examples to leverage vectorization support in
hardware. Batching refers to grouping multiple data points for simul-
taneous processing, leveraging the vectorized computation capabili-
ties of hardware like GPUs. While typical batch sizes range from 32
to 512 examples, the optimal size often depends on the data’s memory
footprint and the specific hardware constraints. Advanced loaders can
stream virtually unlimited datasets from disk and cloud storage. They
stream large datasets from disks or networks instead of fully loading
them into memory, enabling unlimited dataset sizes.

Data loaders can also shuffle data across epochs for randomization
and preprocess features in parallel with model training to expedite the
training process. Randomly shuffling the order of examples between
training epochs reduces bias and improves generalization.

Data loaders also support caching and prefetching strategies to op-
timize data delivery for fast, smooth model training. Caching prepro-
cessed batches in memory allows them to be reused efficiently during
multiple training steps and eliminates redundant processing. Prefetch-
ing, conversely, involves preloading subsequent batches, ensuring that
the model never idles waiting for data.

6.4.6 Data Augmentation

Machine learning frameworks like TensorFlow and PyTorch provide
tools to simplify and streamline the process of data augmentation,
enhancing the efficiency of expanding datasets synthetically. These
frameworks offer integrated functionalities to apply random trans-
formations, such as flipping, cropping, rotating, altering color, and
adding noise for images. For audio data, common augmentations
involve mixing clips with background noise or modulating speed,
pitch, and volume.

By integrating augmentation tools into the data pipeline, frame-
works enable these transformations to be applied on the fly during
each training epoch. This approach increases the variation in the
training data distribution, thereby reducing overfitting and improving
model generalization. Figure 6.9 demonstrates the cases of overfitting
and underfitting. The use of performant data loaders in combination
with extensive augmentation capabilities allows practitioners to
efficiently feed massive, varied datasets to neural networks.

These hands-off data pipelines represent a significant improvement
in usability and productivity. They allow developers to focus more
on model architecture and less on data wrangling when training deep
learning models.



Figure 6.9: Overfitting versus
underfitting. Source: Aquar-
ium Learning
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6.4.7 Loss Functions and Optimization Algorithms

Training a neural network is fundamentally an iterative process that
seeks to minimize a loss function. The goal is to fine-tune the model
weights and parameters to produce predictions close to the true tar-
get labels. Machine learning frameworks have greatly streamlined this
process by offering loss functions and optimization algorithms.

Machine learning frameworks provide implemented loss functions
that are needed for quantifying the difference between the model’s pre-
dictions and the true values. Different datasets require a different loss
function to perform properly, as the loss function tells the computer
the “objective” for it to aim. Commonly used loss functions include
Mean Squared Error (MSE) for regression tasks, Cross-Entropy Loss
for classification tasks, and Kullback-Leibler (KL) Divergence for prob-
abilistic models. For instance, TensorFlow’s tf.keras.losses holds a suite
of these commonly used loss functions.

Optimization algorithms are used to efficiently find the set of
model parameters that minimize the loss function, ensuring the
model performs well on training data and generalizes to new data.
Modern frameworks come equipped with efficient implementations
of several optimization algorithms, many of which are variants of
gradient descent with stochastic methods and adaptive learning rates.
Some examples of these variants are Stochastic Gradient Descent,
Adagrad, Adadelta, and Adam. The implementation of such variants
are provided in tfkeras.optimizers. More information with clear
examples can be found in the Al Training section.
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6.4.8 Model Training Support

A compilation step is required before training a defined neural network
model. During this step, the neural network’s high-level architecture is
transformed into an optimized, executable format. This process com-
prises several steps. The first step is to construct the computational
graph, which represents all the mathematical operations and data flow
within the model. We discussed this earlier.

During training, the focus is on executing the computational graph.
Every parameter within the graph, such as weights and biases, is as-
signed an initial value. Depending on the chosen initialization method,
this value might be random or based on a predefined logic.

The next critical step is memory allocation. Essential memory is re-
served for the model’s operations on both CPUs and GPUs, ensuring
efficient data processing. The model’s operations are then mapped to
the available hardware resources, particularly GPUs or TPUs, to ex-
pedite computation. Once the compilation is finalized, the model is
prepared for training.

The training process employs various tools to improve efficiency.
Batch processing is commonly used to maximize computational
throughput. Techniques like vectorization enable operations on entire
data arrays rather than proceeding element-wise, which bolsters
speed. Optimizations such as kernel fusion (refer to the Optimiza-
tions chapter) amalgamate multiple operations into a single action,
minimizing computational overhead. Operations can also be seg-
mented into phases, facilitating the concurrent processing of different
mini-batches at various stages.

Frameworks consistently checkpoint the state, preserving intermedi-
ate model versions during training. This ensures that progress is recov-
ered if an interruption occurs, and training can be recommenced from
the last checkpoint. Additionally, the system vigilantly monitors the
model’s performance against a validation data set. Should the model
begin to overfit (if its performance on the validation set declines), train-
ing is automatically halted, conserving computational resources and
time.

ML frameworks incorporate a blend of model compilation, en-
hanced batch processing methods, and utilities such as checkpointing
and early stopping. These resources manage the complex aspects of
performance, enabling practitioners to zero in on model development
and training. As a result, developers experience both speed and ease
when utilizing neural networks’ capabilities.
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6.4.9 Validation and Analysis

After training deep learning models, frameworks provide utilities to
evaluate performance and gain insights into the models” workings.
These tools enable disciplined experimentation and debugging.

6.4.9.1 Evaluation Metrics

Frameworks include implementations of common evaluation metrics
for validation:

® Accuracy - Fraction of correct predictions overall. They are
widely used for classification.

¢ Precision - Of positive predictions, how many were positive. Use-
ful for imbalanced datasets.

¢ Recall - Of actual positives, how many did we predict correctly?
Measures completeness.

¢ Fl-score - Harmonic mean of precision and recall. Combines
both metrics.

¢ AUC-ROC - Area under ROC curve. They are used for classifica-
tion threshold analysis.

¢ MAP - Mean Average Precision. Evaluate ranked predictions in
retrieval /detection.

¢ Confusion Matrix - Matrix that shows the true positives, true neg-
atives, false positives, and false negatives. Provides a more de-
tailed view of classification performance.

These metrics quantify model performance on validation data for
comparison.

6.4.9.2 Visualization
Visualization tools provide insight into models:

¢ Loss curves - Plot training and validation loss over time to spot
Overfitting.

e Activation grids - [llustrate features learned by convolutional fil-
ters.

¢ Projection - Reduce dimensionality for intuitive visualization.
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¢ Precision-recall curves - Assess classification tradeoffs. Fig-
ure 6.10 shows an example of a precision-recall curve.

Tools like TensorBoard for TensorFlow and TensorWatch for PyTorch
enable real-time metrics and visualization during training.

6.4.10 Differentiable programming

Machine learning training methods such as backpropagation rely on
the change in the loss function with respect to the change in weights
(which essentially is the definition of derivatives). Thus, the ability to
quickly and efficiently train large machine learning models relies on
the computer’s ability to take derivatives. This makes differentiable
programming one of the most important elements of a machine learn-
ing framework.

We can use four primary methods to make computers take deriva-
tives. First, we can manually figure out the derivatives by hand and
input them into the computer. This would quickly become a night-
mare with many layers of neural networks if we had to compute all the
derivatives in the backpropagation steps by hand. Another method is
symbolic differentiation using computer algebra systems such as Math-
ematica, which can introduce a layer of inefficiency, as there needs to
be a level of abstraction to take derivatives. Numerical derivatives, the
practice of approximating gradients using finite difference methods,
suffer from many problems, including high computational costs and

Figure 6.10: Reading a
precision-recall curve. Source:
AIM


https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.techtarget.com%2Fsearchcio%2Fdefinition%2Ftransfer-learning&psig=AOvVaw0Cbiewbu_6NsNVf314C9Q8&ust=1722534991962000&source=images&cd=vfe&opi=89978449&ved=0CBEQjRxqFwoTCPj5jITt0YcDFQAAAAAdAAAAABAE
https://www.tensorflow.org/tensorboard/scalars_and_keras
https://github.com/microsoft/tensorwatch
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larger grid sizes, leading to many errors. This leads to automatic dif-
ferentiation, which exploits the primitive functions that computers use
to represent operations to obtain an exact derivative. With automatic
differentiation, the computational complexity of computing the gra-
dient is proportional to computing the function itself. Intricacies of
automatic differentiation are not dealt with by end users now, but re-
sources to learn more can be found widely, such as from here. Today’s
automatic differentiation and differentiable programming are ubiqui-
tous and are done efficiently and automatically by modern machine
learning frameworks.

6.4.11 Hardware Acceleration

The trend to continuously train and deploy larger machine-learning
models has made hardware acceleration support necessary for
machine-learning platforms. Figure 6.11 shows the large number of
companies that are offering hardware accelerators in different do-
mains, such as “Very Low Power” and “Embedded” machine learning.
Deep layers of neural networks require many matrix multiplications,
which attract hardware that can compute matrix operations quickly
and in parallel. In this landscape, two hardware architectures, the
GPU and TPU, have emerged as leading choices for training machine
learning models.

The use of hardware accelerators began with AlexNet, which paved
the way for future works to use GPUs as hardware accelerators for
training computer vision models. GPUs, or Graphics Processing Units,
excel in handling many computations at once, making them ideal for
the matrix operations central to neural network training. Their archi-
tecture, designed for rendering graphics, is perfect for the mathemati-
cal operations required in machine learning. While they are very use-
ful for machine learning tasks and have been implemented in many
hardware platforms, GPUs are still general purpose in that they can be
used for other applications.

On the other hand, Tensor Processing Units (TPU) are hardware
units designed specifically for neural networks. They focus on the
multiply and accumulate (MAC) operation, and their hardware con-
sists of a large hardware matrix that contains elements that efficiently
compute the MAC operation. This concept, called the systolic array
architecture, was pioneered by Kung and Leiserson (1979), but has
proven to be a useful structure to efficiently compute matrix products
and other operations within neural networks (such as convolutions).

While TPUs can drastically reduce training times, they also have dis-
advantages. For example, many operations within the machine learn-


https://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/slides/lec10.pdf
https://cloud.google.com/tpu/docs/intro-to-tpu
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://cloud.google.com/tpu/docs/intro-to-tpu
https://www.eecs.harvard.edu/~htk/publication/1982-kung-why-systolic-architecture.pdf
https://www.eecs.harvard.edu/~htk/publication/1982-kung-why-systolic-architecture.pdf
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ing frameworks (primarily TensorFlow here since the TPU directly in-
tegrates with it) are not supported by TPUs. They cannot also support
custom operations from the machine learning frameworks, and the net-
work design must closely align with the hardware capabilities.

Today, NVIDIA GPUs dominate training, aided by software libraries
like CUDA, cuDNN, and TensorRT. Frameworks also include optimiza-
tions to maximize performance on these hardware types, such as prun-
ing unimportant connections and fusing layers. Combining these tech-
niques with hardware acceleration provides greater efficiency. For in-
ference, hardware is increasingly moving towards optimized ASICs
and SoCs. Google’s TPUs accelerate models in data centers, while Ap-
ple, Qualcomm, the NVIDIA Jetson family, and others now produce
Al-focused mobile chips.

Companies offering Deep Neural Network Accelerators
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6.5 Advanced Features

Beyond providing the essential tools for training machine learning
models, frameworks also offer advanced features. These features
include distributing training across different hardware platforms,
fine-tuning large pre-trained models with ease, and facilitating feder-
ated learning. Implementing these capabilities independently would
be highly complex and resource-intensive, but frameworks simplify
these processes, making advanced machine learning techniques more
accessible.

Figure 6.11: Companies offer-
ing ML hardware accelerators.
Source: Gradient Flow.


https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/tensorrt#:~:text=NVIDIA
https://gradientflow.com/one-simple-chart-companies-that-offer-deep-neural-network-accelerators/
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6.5.1 Distributed training

As machine learning models have become larger over the years, it has
become essential for large models to use multiple computing nodes in
the training process. This process, distributed learning, has allowed
for higher training capabilities but has also imposed challenges in im-
plementation.

We can consider three different ways to spread the work of training
machine learning models to multiple computing nodes. Input data
partitioning (or data parallelism) refers to multiple processors running
the same model on different input partitions. This is the easiest im-
plementation and is available for many machine learning frameworks.
The more challenging distribution of work comes with model paral-
lelism, which refers to multiple computing nodes working on differ-
ent parts of the model, and pipelined model parallelism, which refers
to multiple computing nodes working on different layers of the model
on the same input. The latter two mentioned here are active research
areas.

ML frameworks that support distributed learning include Ten-
sorFlow (through its tf.distribute module), PyTorch (through its
torch.nn.DataParallel and torch.nn.DistributedDataParallel modules),
and MXNet (through its gluon API).

6.5.2 Model Conversion

Machine learning models have various methods to be represented and
used within different frameworks and for different device types. For
example, a model can be converted to be compatible with inference
frameworks within the mobile device. The default format for Tensor-
Flow models is checkpoint files containing weights and architectures,
which are needed to retrain the models. However, models are typi-
cally converted to TensorFlow Lite format for mobile deployment. Ten-
sorFlow Lite uses a compact flat buffer representation and optimiza-
tions for fast inference on mobile hardware, discarding all the unnec-
essary baggage associated with training metadata, such as checkpoint
file structures.

Model optimizations like quantization (see Optimizations chapter)
can further optimize models for target architectures like mobile. This
reduces the precision of weights and activations to uint8 or int8 for
a smaller footprint and faster execution with supported hardware ac-
celerators. For post-training quantization, TensorFlow’s converter han-
dles analysis and conversion automatically.

Frameworks like TensorFlow simplify deploying trained models
to mobile and embedded IoT devices through easy conversion APIs


https://www.tensorflow.org/api_docs/python/tf/distribute
https://pytorch.org/docs/stable/generated/torch.nn.DataParallel.html
https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html
https://mxnet.apache.org/versions/1.9.1/api/python/docs/api/gluon/index.html
../optimizations/optimizations.qmd
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for TFLite format and quantization. Ready-to-use conversion enables
high-performance inference on mobile without a manual optimization
burden. Besides TFLite, other common targets include TensorFlow.js
for web deployment, TensorFlow Serving for cloud services, and
TensorFlow Hub for transfer learning. TensorFlow’s conversion
utilities handle these scenarios to streamline end-to-end workflows.

More information about model conversion in TensorFlow is linked
here.

6.5.3 AutoML, No-Code/Low-Code ML

In many cases, machine learning can have a relatively high barrier
of entry compared to other fields. To successfully train and deploy
models, one needs to have a critical understanding of a variety of
disciplines, from data science (data processing, data cleaning), model
structures (hyperparameter tuning, neural network architecture),
hardware (acceleration, parallel processing), and more depending on
the problem at hand. The complexity of these problems has led to
the introduction of frameworks such as AutoML, which tries to make
“Machine learning available for non-Machine Learning experts” and
to “automate research in machine learning.” They have constructed
AutoWEKA, which aids in the complex process of hyperparame-
ter selection, and Auto-sklearn and Auto-pytorch, an extension of
AutoWEKA into the popular sklearn and PyTorch Libraries.

While these efforts to automate parts of machine learning tasks are
underway, others have focused on making machine learning models
easier by deploying no-code/low-code machine learning, utilizing
a drag-and-drop interface with an easy-to-navigate user interface.
Companies such as Apple, Google, and Amazon have already created
these easy-to-use platforms to allow users to construct machine
learning models that can integrate into their ecosystem.

These steps to remove barriers to entry continue to democratize ma-
chine learning, make it easier for beginners to access, and simplify
workflow for experts.

6.5.4 Advanced Learning Methods

6.5.4.1 Transfer Learning

Transfer learning is the practice of using knowledge gained from a pre-
trained model to train and improve the performance of a model for a
different task. For example, models such as MobileNet and ResNet are
trained on the ImageNet dataset. To do so, one may freeze the pre-


https://www.tensorflow.org/lite/models/convert

Figure 6.12: Transfer learning.
Source: Tech Target
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trained model, utilizing it as a feature extractor to train a much smaller
model built on top of the feature extraction. One can also fine-tune the
entire model to fit the new task. Machine learning frameworks make it
easy toload pre-trained models, freeze specific layers, and train custom
layers on top. They simplify this process by providing intuitive APIs
and easy access to large repositories of pre-trained models.

Transfer learning, while powerful, comes with challenges. One sig-
nificant issue is the modified model’s potential inability to conduct its
original tasks after transfer learning. To address these challenges, re-
searchers have proposed various solutions. For example, Zhizhong
Li and Hoiem (2018) introduced the concept of “Learning without For-
getting” in their paper “Learning without Forgetting”, which has since
been implemented in modern machine learning platforms. Figure 6.12
provides a simplified illustration of the transfer learning concept:

How transfer learning works

Training from scratch

Transfer learning

Trained t Trained t

As shown in Figure 6.12, transfer learning involves taking a model
trained on one task (the source task) and adapting it to perform a new,
related task (the target task). This process allows the model to lever-
age knowledge gained from the source task, potentially improving per-
formance and reducing training time on the target task. However, as
mentioned earlier, care must be taken to ensure that the model doesn’t
“forget” its ability to perform the original task during this process.


https://keras.io/api/applications/
https://browse.arxiv.org/pdf/1606.09282.pdf
https://www.google.com/url?sa=i&url=https%3A%2F%2Fanalyticsindiamag.com%2Fdevelopers-corner%2Fcomplete-guide-to-understanding-precision-and-recall-curves%2F&psig=AOvVaw3MosZItazJt2eermLTArjj&ust=1722534897757000&source=images&cd=vfe&opi=89978449&ved=0CBEQjRxqFwoTCIi389bs0YcDFQAAAAAdAAAAABAw
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6.5.4.2 Federated Learning

Federated learning by McMahan et al. (2017a) is a form of distributed
computing that involves training models on personal devices rather
than centralizing the data on a single server (Figure 12.7). Initially, a
base global model is trained on a central server to be distributed to
all devices. Using this base model, the devices individually compute
the gradients and send them back to the central hub. Intuitively, this
transfers model parameters instead of the data itself. Federated learn-
ing enhances privacy by keeping sensitive data on local devices and
only sharing model updates with a central server. This method is par-
ticularly useful when dealing with sensitive data or when a large-scale
infrastructure is impractical.
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However, federated learning faces challenges such as ensuring data
accuracy, managing non-IID (independent and identically distributed)
data, dealing with unbalanced data production, and overcoming com-
munication overhead and device heterogeneity. Privacy and security
concerns, such as gradient inversion attacks, also pose significant chal-
lenges.

Machine learning frameworks simplify the implementation of feder-
ated learning by providing necessary tools and libraries. For example,
TensorFlow Federated (TFF) offers an open-source framework to sup-
port federated learning. TFF allows developers to simulate and imple-
ment federated learning algorithms, offering a federated core for low-
level operations and high-level APIs for common federated tasks. It
seamlessly integrates with TensorFlow, enabling the use of TensorFlow
models and optimizers in a federated setting. TFF supports secure ag-
gregation techniques to improve privacy and allows for customization

Figure 6.13: A centralized-
server approach to federated
learning. Source: NVIDIA.


https://blogs.nvidia.com/blog/what-is-federated-learning/
https://www.tensorflow.org/federated
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of federated learning algorithms. By leveraging these tools, developers
can efficiently distribute training, fine-tune pre-trained models, and
handle federated learning’s inherent complexities.

Other open source programs such as Flower have also been devel-
oped to simplify implementing federated learning with various ma-
chine learning frameworks.

6.6 Framework Specialization

Thus far, we have talked about ML frameworks generally. However,
typically, frameworks are optimized based on the target environ-
ment’s computational capabilities and application requirements,
ranging from the cloud to the edge to tiny devices. Choosing the right
framework is crucial based on the target environment for deployment.
This section provides an overview of the major types of Al frame-
works tailored for cloud, edge, and TinyML environments to help
understand the similarities and differences between these ecosystems.

6.6.1 Cloud

Cloud-based Al frameworks assume access to ample computational
power, memory, and storage resources in the cloud. They generally
support both training and inference. Cloud-based Al frameworks are
suited for applications where data can be sent to the cloud for process-
ing, such as cloud-based Al services, large-scale data analytics, and
web applications. Popular cloud Al frameworks include the ones we
mentioned earlier, such as TensorFlow, PyTorch, MXNet, Keras, etc.
These frameworks utilize GPUs, TPUs, distributed training, and Au-
toML to deliver scalable Al. Concepts like model serving, MLOps, and
AlOps relate to the operationalization of Al in the cloud. Cloud Al
powers services like Google Cloud Al and enables transfer learning
using pre-trained models.

6.6.2 Edge

Edge Al frameworks are tailored to deploy Al models on IoT devices,
smartphones, and edge servers. Edge Al frameworks are optimized
for devices with moderate computational resources, balancing power
and performance. Edge Al frameworks are ideal for applications re-
quiring real-time or near-real-time processing, including robotics, au-
tonomous vehicles, and smart devices. Key edge Al frameworks in-
clude TensorFlow Lite, PyTorch Mobile, CoreML, and others. They


https://flower.dev/
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employ optimizations like model compression, quantization, and effi-
cient neural network architectures. Hardware support includes CPUs,
GPUs, NPUs, and accelerators like the Edge TPU. Edge Al enables use
cases like mobile vision, speech recognition, and real-time anomaly de-
tection.

6.6.3 Embedded

TinyML frameworks are specialized for deploying AI models on
extremely resource-constrained devices, specifically microcontrollers
and sensors within the Iol ecosystem. TinyML frameworks are
designed for devices with limited resources, emphasizing minimal
memory and power consumption. TinyML frameworks are special-
ized for use cases on resource-constrained IoI devices for predictive
maintenance, gesture recognition, and environmental monitoring ap-
plications. Major TinyML frameworks include TensorFlow Lite Micro,
uTensor, and ARM NN. They optimize complex models to fit within
kilobytes of memory through techniques like quantization-aware
training and reduced precision. TinyML allows intelligent sensing
across battery-powered devices, enabling collaborative learning via
federated learning. The choice of framework involves balancing model
performance and computational constraints of the target platform,
whether cloud, edge, or TinyML. Table 6.3 compares the major Al
frameworks across cloud, edge, and TinyML environments:

Table 6.3: Comparison of framework types for Cloud Al, Edge Al, and

TinyML.

Framework

Type Examples Key Technologies Use Cases

Cloud TensorFlow, GPUs, TPUs, Cloud services, web

Al PyTorch, distributed training, apps, big data
MXNet, AutoML, MLOps analytics
Keras

Edge TensorFlow Model optimization, Mobile apps,

Al Lite, compression, autonomous
PyTorch quantization, efficient ~ systems, real-time
Mobile, NN architectures processing

Core ML



6.7. Embedded AI Frameworks 158

Framework
Type Examples Key Technologies Use Cases
TinyMLIensorFlow  Quantization-aware IoT sensors,
Lite Micro, training, reduced wearables,
uTensor, precision, neural predictive
ARM NN architecture search maintenance,
gesture recognition
Key differences:

¢ Cloud Al leverages massive computational power for complex
models using GPUs/TPUs and distributed training

¢ Edge Al optimizes models to run locally on resource-constrained
edge devices.

¢ TinyML fits models into extremely low memory and computes
environments like microcontrollers

6.7 Embedded AI Frameworks

6.7.1 Resource Constraints

Embedded systems face severe resource constraints that pose unique
challenges when deploying machine learning models compared to
traditional computing platforms. For example, microcontroller units
(MCUs) commonly used in IoT devices often have:

* RAM ranges from tens of kilobytes to a few megabytes. The pop-
ular ESP8266 MCU has around 80KB RAM available to develop-
ers. This contrasts with 8GB or more on typical laptops and desk-
tops today.

e Flash storage ranges from hundreds of kilobytes to a few
megabytes. The Arduino Uno microcontroller provides just
32KB of code storage. Standard computers today have disk
storage in the order of terabytes.

® Processing power from just a few MHz to approximately
200MHz. The ESP8266 operates at 80MHz. This is several
orders of magnitude slower than multi-GHz multi-core CPUs in
servers and high-end laptops.


https://www.espressif.com/en/products/socs/esp8266
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These tight constraints often make training machine learning mod-
els directly on microcontrollers infeasible. The limited RAM precludes
handling large datasets for training. Energy usage for training would
also quickly deplete battery-powered devices. Instead, models are
trained on resource-rich systems and deployed on microcontrollers
for optimized inference. But even inference poses challenges:

1. Model Size: Al models are too large to fit on embedded and IoT
devices. This necessitates model compression techniques, such
as quantization, pruning, and knowledge distillation. Addition-
ally, as we will see, many of the frameworks used by developers
for Al development have large amounts of overhead and built-in
libraries that embedded systems can’t support.

2. Complexity of Tasks: With only tens of KBs to a few MBs of
RAM, IoT devices and embedded systems are constrained in the
complexity of tasks they can handle. Tasks that require large
datasets or sophisticated algorithms—for example, LLMs—that
would run smoothly on traditional computing platforms might
be infeasible on embedded systems without compression or
other optimization techniques due to memory limitations.

3. Data Storage and Processing: Embedded systems often process
data in real time and might only store small amounts locally.
Conversely, traditional computing systems can hold and pro-
cess large datasets in memory, enabling faster data operations
analysis and real-time updates.

4. Security and Privacy: Limited memory also restricts the com-
plexity of security algorithms and protocols, data encryption,
reverse engineering protections, and more that can be imple-
mented on the device. This could make some IoI' devices more
vulnerable to attacks.

Consequently, specialized software optimizations and ML frame-
works tailored for microcontrollers must work within these tight
resource bounds. Clever optimization techniques like quantization,
pruning, and knowledge distillation compress models to fit within
limited memory (see Optimizations section). Learnings from neural
architecture search help guide model designs.

Hardware improvements like dedicated ML accelerators on micro-
controllers also help alleviate constraints. For instance, Qualcomm’s
Hexagon DSP accelerates TensorFlow Lite models on Snapdragon
mobile chips. Google’s Edge TPU packs ML performance into a tiny
ASIC for edge devices. ARM Ethos-U55 offers efficient inference on


https://developer.qualcomm.com/software/hexagon-dsp-sdk/dsp-processor
https://developer.qualcomm.com/software/hexagon-dsp-sdk/dsp-processor
https://cloud.google.com/edge-tpu
https://www.arm.com/products/silicon-ip-cpu/ethos/ethos-u55
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Cortex-M class microcontrollers. These customized ML chips unlock
advanced capabilities for resource-constrained applications.

Due to limited processing power, it’s almost always infeasible to
train Al models on Iol' or embedded systems. Instead, models are
trained on powerful traditional computers (often with GPUs) and then
deployed on the embedded device for inference. TinyML specifically
deals with this, ensuring models are lightweight enough for real-time
inference on these constrained devices.

6.7.2 Frameworks & Libraries

Embedded AI frameworks are software tools and libraries designed
to enable Al and ML capabilities on embedded systems. These frame-
works are essential for bringing Al to IoI devices, robotics, and other
edge computing platforms, and they are designed to work where com-
putational resources, memory, and power consumption are limited.

6.7.3 Challenges

While embedded systems present an enormous opportunity for de-
ploying machine learning to enable intelligent capabilities at the edge,
these resource-constrained environments pose significant challenges.
Unlike typical cloud or desktop environments rich with computa-
tional resources, embedded devices introduce severe constraints
around memory, processing power, energy efficiency, and specialized
hardware. As a result, existing machine learning techniques and
frameworks designed for server clusters with abundant resources do
not directly translate to embedded systems. This section uncovers
some of the challenges and opportunities for embedded systems and
ML frameworks.

6.7.3.1 Fragmented Ecosystem

The lack of a unified ML framework led to a highly fragmented ecosys-
tem. Engineers at companies like STMicroelectronics, NXP Semicon-
ductors, and Renesas had to develop custom solutions tailored to their
specific microcontroller and DSP architectures. These ad-hoc frame-
works required extensive manual optimization for each low-level hard-
ware platform. This made porting models extremely difficult, requir-
ing redevelopment for new Arm, RISC-V, or proprietary architectures.


https://www.st.com/
https://www.nxp.com/
https://www.nxp.com/
https://www.renesas.com/
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6.7.3.2 Disparate Hardware Needs

Without a shared framework, there was no standard way to assess hard-
ware’s capabilities. Vendors like Intel, Qualcomm, and NVIDIA cre-
ated integrated solutions, blending models and improving software
and hardware. This made it hard to discern the sources of performance
gains - whether new chip designs like Intel’s low-power x86 cores or
software optimizations were responsible. A standard framework was
needed so vendors could evaluate their hardware’s capabilities fairly
and reproducibly.

6.7.3.3 Lack of Portability

With standardized tools, adapting models trained in common frame-
works like TensorFlow or PyTorch to run efficiently on microcontrollers
was easier. It required time-consuming manual translation of models
to run on specialized DSPs from companies like CEVA or low-power
Arm M-series cores. No turnkey tools were enabling portable deploy-
ment across different architectures.

6.7.3.4 Incomplete Infrastructure

The infrastructure to support key model development workflows
needed to be improved. More support is needed for compression
techniques to fit large models within constrained memory budgets.
Tools for quantization to lower precision for faster inference were
missing. Standardized APIs for integration into applications were
incomplete. Essential functionality like on-device debugging, metrics,
and performance profiling was absent. These gaps increased the cost
and difficulty of embedded ML development.

6.7.3.5 No Standard Benchmark

Without unified benchmarks, there was no standard way to assess and
compare the capabilities of different hardware platforms from vendors
like NVIDIA, Arm, and Ambiq Micro. Existing evaluations relied on
proprietary benchmarks tailored to showcase the strengths of particu-
lar chips. This made it impossible to measure hardware improvements
objectively in a fair, neutral manner. The Benchmarking Al chapter dis-
cusses this topic in more detail.


../benchmarking/benchmarking.qmd
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6.7.3.6 Minimal Real-World Testing

Much of the benchmarks relied on synthetic data. Rigorously test-
ing models on real-world embedded applications was difficult without
standardized datasets and benchmarks, raising questions about how
performance claims would translate to real-world usage. More exten-
sive testing was needed to validate chips in actual use cases.

The lack of shared frameworks and infrastructure slowed TinyML
adoption, hampering the integration of ML into embedded products.
Recent standardized frameworks have begun addressing these issues
through improved portability, performance profiling, and benchmark-
ing support. However, ongoing innovation is still needed to enable
seamless, cost-effective deployment of Al to edge devices.

6.7.3.7 Summary

The absence of standardized frameworks, benchmarks, and infrastruc-
ture for embedded ML has traditionally hampered adoption. How-
ever, recent progress has been made in developing shared frameworks
like TensorFlow Lite Micro and benchmark suites like MLPerf Tiny that
aim to accelerate the proliferation of TinyML solutions. However, over-
coming the fragmentation and difficulty of embedded deployment re-
mains an ongoing process.

6.8 Examples

Machine learning deployment on microcontrollers and other em-
bedded devices often requires specially optimized software libraries
and frameworks to work within tight memory, compute, and power
constraints. Several options exist for performing inference on such
resource-limited hardware, each with its approach to optimizing
model execution. This section will explore the key characteristics and
design principles behind TFLite Micro, TinyEngine, and CMSIS-NN,
providing insight into how each framework tackles the complex
problem of high-accuracy yet efficient neural network execution
on microcontrollers. It will also showcase different approaches for
implementing efficient TinyML frameworks.

Table 6.4 summarizes the key differences and similarities between
these three specialized machine-learning inference frameworks for em-
bedded systems and microcontrollers.
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Table 6.4: Comparison of frameworks:

TinyEngine, and CMSIS-NN

TensorFlow Lite Micro,

TensorFlow
Framework Lite Micro TinyEngine CMSIS-NN
Approach  Interpreter-  Static compilation  Optimized neural
based network kernels
Hardware  General Microcontrollers ARM Cortex-M
Focus embedded processors
devices
Arithmetic  Floating Floating point, Floating point,
Support point fixed point fixed point
Model General Models Common neural
Support neural co-designed with  network layer
network TinyNAS types
models
Code Larger due = Small, includes Lightweight by
Footprint  toinclusion only ops needed design
of for model
interpreter
and ops
Latency Higher due  Very low due to Low latency focus
to interpre-  compiled model
tation
overhead
Memory Dynamically Model-level Tools for efficient
Manage- managed by  optimization allocation
ment interpreter
OptimizationSome code Specialized Architecture-
Approach  generation  kernels, operator  specific assembly
features fusion optimizations
Key Flexibility, Maximizes Hardware
Benefits portability, performance, acceleration,
ease of optimized standardized API,
updating memory usage portability
models

We will understand each of these in greater detail in the following

sections.

6.8.1 Interpreter

TensorFlow Lite Micro (TFLM) is a machine learning inference frame-


https://www.tensorflow.org/lite/microcontrollers
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work designed for embedded devices with limited resources. It uses an
interpreter to load and execute machine learning models, which pro-
vides flexibility and ease of updating models in the field (David et al.
2021).

Traditional interpreters often have significant branching overhead,
which can reduce performance. However, machine learning model
interpretation benefits from the efficiency of long-running kernels,
where each kernel runtime is relatively large and helps mitigate
interpreter overhead.

An alternative to an interpreter-based inference engine is to gener-
ate native code from a model during export. This can improve perfor-
mance, but it sacrifices portability and flexibility, as the generated code
needs recompilation for each target platform and must be replaced en-
tirely to modify a model.

TFLM balances the simplicity of code compilation and the flex-
ibility of an interpreter-based approach by incorporating certain
code-generation features. For example, the library can be constructed
solely from source files, offering much of the compilation simplicity
associated with code generation while retaining the benefits of an
interpreter-based model execution framework.

An interpreter-based approach offers several benefits over code gen-
eration for machine learning inference on embedded devices:

¢ Flexibility: Models can be updated in the field without recom-
piling the entire application.

® Portability: The interpreter can be used to execute models on
different target platforms without porting the code.

* Memory efficiency: The interpreter can share code across multi-
ple models, reducing memory usage.

¢ Ease of development: Interpreters are easier to develop and
maintain than code generators.

TensorFlow Lite Micro is a powerful and flexible framework for ma-
chine learning inference on embedded devices. Its interpreter-based
approach offers several benefits over code generation, including flexi-
bility, portability, memory efficiency, and ease of development.

6.8.2 Compiler-based

TinyEngine is an ML inference framework designed specifically for
resource-constrained microcontrollers. It employs several optimiza-
tions to enable high-accuracy neural network execution within the


https://github.com/mit-han-lab/tinyengine
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tight constraints of memory, computing, and storage on microcon-
trollers (J. Lin et al. 2020).

While inference frameworks like TFLite Micro use interpreters to ex-
ecute the neural network graph dynamically at runtime, this adds sig-
nificant overhead regarding memory usage to store metadata, interpre-
tation latency, and lack of optimizations. However, TFLite argues that
the overhead is small. TinyEngine eliminates this overhead by employ-
ing a code generation approach. It analyzes the network graph during
compilation and generates specialized code to execute just that model.
This code is natively compiled into the application binary, avoiding
runtime interpretation costs.

Conventional ML frameworks schedule memory per layer, trying
to minimize usage for each layer separately. TinyEngine does model-
level scheduling instead of analyzing memory usage across layers. It
allocates a common buffer size based on the maximum memory needs
of all layers. This buffer is then shared efficiently across layers to in-
crease data reuse.

TinyEngine also specializes in the kernels for each layer through
techniques like tiling, unrolling, and fusing operators. For example,
it will generate unrolled compute kernels with the number of loops
needed for a 3x3 or 5x5 convolution. These specialized kernels extract
maximum performance from the microcontroller hardware. It uses op-
timized depthwise convolutions to minimize memory allocations by
computing each channel’s output in place over the input channel data.
This technique exploits the channel-separable nature of depthwise con-
volutions to reduce peak memory size.

Like TFLite Micro, the compiled TinyEngine binary only includes
operations needed for a specific model rather than all possible opera-
tions. This results in a very small binary footprint, keeping code size
low for memory-constrained devices.

One difference between TFLite Micro and TinyEngine is that the
latter is co-designed with “TinyNAS,” an architecture search method
for microcontroller models similar to differential NAS for microcon-
trollers. TinyEngine’s efficiency allows for exploring larger and more
accurate models through NAS. It also provides feedback to TinyNAS
on which models can fit within the hardware constraints.

Through various custom techniques, such as static compilation,
model-based scheduling, specialized kernels, and co-design with
NAS, TinyEngine enables high-accuracy deep learning inference
within microcontrollers’ tight resource constraints.
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6.8.3 Library

CMSIS-NN, standing for Cortex Microcontroller Software Interface
Standard for Neural Networks, is a software library devised by
ARM. It offers a standardized interface for deploying neural network
inference on microcontrollers and embedded systems, focusing on
optimization for ARM Cortex-M processors (Lai, Suda, and Chandra
2018a).

Neural Network Kernels: CMSIS-NN has highly efficient kernels
that handle fundamental neural network operations such as convolu-
tion, pooling, fully connected layers, and activation functions. It caters
to a broad range of neural network models by supporting floating and
fixed-point arithmetic. The latter is especially beneficial for resource-
constrained devices as it curtails memory and computational require-
ments (Quantization).

Hardware Acceleration: CMSIS-NN harnesses the power of Single
Instruction, Multiple Data (SIMD) instructions available on many
Cortex-M processors. This allows for parallel processing of multiple
data elements within a single instruction, thereby boosting com-
putational efficiency. Certain Cortex-M processors feature Digital
Signal Processing (DSP) extensions that CMSIS-NN can exploit for
accelerated neural network execution. The library also incorporates
assembly-level optimizations tailored to specific microcontroller
architectures to improve performance further.

Standardized API: CMSIS-NN offers a consistent and abstracted
API that protects developers from the complexities of low-level hard-
ware details. This makes the integration of neural network models
into applications simpler. It may also encompass tools or utilities for
converting popular neural network model formats into a format that
is compatible with CMSIS-NN.

Memory Management: CMSIS-NN provides functions for efficient
memory allocation and management, which is vital in embedded sys-
tems where memory resources are scarce. It ensures optimal memory
usage during inference and, in some instances, allows in-place opera-
tions to decrease memory overhead.

Portability: CMSIS-NN is designed for portability across vari-
ous Cortex-M processors. This enables developers to write code
that can operate on different microcontrollers without significant
modifications.

Low Latency: CMSIS-NN minimizes inference latency, making it an
ideal choice for real-time applications where swift decision-making is
paramount.

Energy Efficiency: The library is designed with a focus on energy
efficiency, making it suitable for battery-powered and energy-


https://www.keil.com/pack/doc/CMSIS/NN/html/index.html
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constrained devices.

6.9 Choosing the Right Framework

Choosing the right machine learning framework for a given applica-
tion requires carefully evaluating models, hardware, and software con-
siderations. Figure 6.14 provides a comparison of different TensorFlow
frameworks, which we’ll discuss in more detail:

| ® ®
TensorFlow TensorFlow | ke TensorFlow Lite
Figure 6.14: TensorFlow
No Framework Comparison -

Training Yes No
General. Source: TensorFlow.
Yes Yes Yes
(but inefficient (and efficient) (and even
on edge) more efficient)
How Many Ops ~1400 ~130 ~50
Native Quantization No Yes Yes

Tooling + Support

Analyzing these three aspects—models, hardware, and software—
as depicted in Figure 6.14, ML engineers can select the optimal frame-
work and customize it as needed for efficient and performant on-device
ML applications. The goal is to balance model complexity, hardware
limitations, and software integration to design a tailored ML pipeline
for embedded and edge devices. As we examine the differences shown
in Figure 6.14, we'll gain insights into how to pick the right framework
and understand what causes the variations between frameworks.

6.9.1 Model

Figure 6.14 illustrates the key differences between TensorFlow variants,
particularly in terms of supported operations (ops) and features. Ten-
sorFlow supports significantly more operations than TensorFlow Lite
and TensorFlow Lite Micro, as it is typically used for research or cloud
deployment, which require a large number of and more flexibility with
operators.

The figure clearly demonstrates this difference in op support across
the frameworks. TensorFlow Lite supports select ops for on-device
training, whereas TensorFlow Micro does not. Additionally, the
figure shows that TensorFlow Lite supports dynamic shapes and
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quantization-aware training, features that are absent in TensorFlow
Micro. In contrast, both TensorFlow Lite and TensorFlow Micro offer
native quantization tooling and support. Here, quantization refers
to transforming an ML program into an approximated representa-
tion with available lower precision operations, a crucial feature for
embedded and edge devices with limited computational resources.

6.9.2 Software

As shown in Figure 6.15, TensorFlow Lite Micro does not have OS sup-
port, while TensorFlow and TensorFlow Lite do. This design choice for
TensorFlow Lite Micro helps reduce memory overhead, make startup
times faster, and consume less energy. Instead, TensorFlow Lite Micro
can be used in conjunction with real-time operating systems (RTOS)
like FreeRTOS, Zephyr, and Mbed OS.

The figure also highlights an important memory management fea-
ture: TensorFlow Lite and TensorFlow Lite Micro support model mem-
ory mapping, allowing models to be directly accessed from flash stor-
age rather than loaded into RAM. In contrast, TensorFlow does not
offer this capability.

- ,‘ 1
Software ® ®
TensorFlow TensorfFlow Lite TensorFlow Lie

Needs an OS Yes Yes No
Memory Mapping

of Models No Yes Yes

Delegation to Yes Yes No

accelerators

Another key difference is accelerator delegation. TensorFlow and
TensorFlow Lite support this feature, allowing them to schedule code
to different accelerators. However, TensorFlow Lite Micro does not of-
fer accelerator delegation, as embedded systems tend to have a limited
array of specialized accelerators.

These differences demonstrate how each TensorFlow variant is op-
timized for its target deployment environment, from powerful cloud
servers to resource-constrained embedded devices.

6.9.3 Hardware

TensorFlow Lite and TensorFlow Lite Micro have significantly smaller
base binary sizes and memory footprints than TensorFlow (see
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Figure 6.16). For example, a typical TensorFlow Lite Micro binary
is less than 200KB, whereas TensorFlow is much larger. This is due
to the resource-constrained environments of embedded systems.
TensorFlow supports x86, TPUs, and GPUs like NVIDIA, AMD, and
Intel.

“ ; o ' t
TensorFlow TensorFlow Lite TensorFlow Lite
Base Binary Size 3MB+ 100KB ~10KB

Base Memory ~5MB 300KB 20KB
Footprint

Optimized Arm Cortex M,
T T i X86, TPUs, GPUs Arm Cortex A, x86 DSPs, MCUs

TensorFlow Lite supports Arm Cortex-A and x86 processors com-
monly used on mobile phones and tablets. The latter is stripped of all
the unnecessary training logic for on-device deployment. TensorFlow
Lite Micro provides support for microcontroller-focused Arm Cortex
M cores like M0, M3, M4, and M7, as well as DSPs like Hexagon and
SHARC and MCUs like STM32, NXP Kinetis, Microchip AVR.

6.9.4 Other Factors

Selecting the appropriate Al framework is essential to ensure that em-
bedded systems can efficiently execute Al models. Several key factors
beyond models, hardware, and software should be considered when
evaluating Al frameworks for embedded systems.

Other key factors to consider when choosing a machine learning
framework are performance, scalability, ease of use, integration with
data engineering tools, integration with model optimization tools, and
community support. Developers can make informed decisions and
maximize the potential of your machine-learning initiatives by under-
standing these various factors.

6.9.4.1 Performance

Performance is critical in embedded systems where computational
resources are limited. Evaluate the framework’s ability to optimize
model inference for embedded hardware. Model quantization and
hardware acceleration support are crucial in achieving efficient
inference.

Figure 6.16:
Hardware.
Flow.

TensorFlow
Framework Comparison -

Source:

Tensor-
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6.9.4.2 Scalability

Scalability is essential when considering the potential growth of an em-
bedded Al project. The framework should support the deployment of
models on various embedded devices, from microcontrollers to more
powerful processors. It should also seamlessly handle both small-scale
and large-scale deployments.

6.9.4.3 Integration with Data Engineering Tools

Data engineering tools are essential for data preprocessing and
pipeline management. An ideal Al framework for embedded systems
should seamlessly integrate with these tools, allowing for efficient
data ingestion, transformation, and model training.

6.9.4.4 Integration with Model Optimization Tools

Model optimization ensures that Al models are well-suited for em-
bedded deployment. Evaluate whether the framework integrates with
model optimization tools like TensorFlow Lite Converter or ONNX
Runtime to facilitate model quantization and size reduction.

6.9.4.5 Ease of Use

The ease of use of an Al framework significantly impacts development
efficiency. A framework with a user-friendly interface and clear docu-
mentation reduces developers’ learning curve. Consideration should
be given to whether the framework supports high-level APIs, allow-
ing developers to focus on model design rather than low-level imple-
mentation details. This factor is incredibly important for embedded
systems, which have fewer features than typical developers might be
accustomed to.

6.9.4.6 Community Support

Community support plays another essential factor. Frameworks
with active and engaged communities often have well-maintained
codebases, receive regular updates, and provide valuable forums for
problem-solving. As a result, community support also plays into
Ease of Use because it ensures that developers have access to a wealth
of resources, including tutorials and example projects. Community
support provides some assurance that the framework will continue
to be supported for future updates. There are only a few frameworks
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that cater to TinyML needs. TensorFlow Lite Micro is the most popular
and has the most community support.

6.10 Future Trends in ML Frameworks

6.10.1 Decomposition

Currently, the ML system stack consists of four abstractions as shown
in Figure 6.17, namely (1) computational graphs, (2) tensor programs,
(3) libraries and runtimes, and (4) hardware primitives.

= Figure 6.17: Four abstractions
T—\g AI A licaﬂons in current ML system stacks.
3% Source: TVM.

Computational Graphs

oinnio

1o(ig)or Tensor Programs

onhzoal

This has led to vertical (i.e., between abstraction levels) and hori-
zontal (i.e., library-driven vs. compilation-driven approaches to ten-
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sor computation) boundaries, which hinder innovation for ML. Future
work in ML frameworks can look toward breaking these boundaries.
In December 2021, Apache TVM Unity was proposed, which aimed to
facilitate interactions between the different abstraction levels (as well
as the people behind them, such as ML scientists, ML engineers, and
hardware engineers) and co-optimize decisions in all four abstraction
levels.

6.10.2 High-Performance Compilers & Libraries

As ML frameworks further develop, high-performance compilers and
libraries will continue to emerge. Some current examples include Ten-
sorFlow XLA and Nvidia’s CUTLASS, which accelerate linear algebra
operations in computational graphs, and Nvidia’s TensorRT, which ac-
celerates and optimizes inference.

6.10.3 ML for ML Frameworks

We can also use ML to improve ML frameworks in the future. Some
current uses of ML for ML frameworks include:

¢ Hyperparameter optimization using techniques such as Bayesian
optimization, random search, and grid search

* Neural Architecture Search (NAS) to automatically search for op-
timal network architectures

e AutoML, which as described in Section 6.5, automates the ML
pipeline.

6.11 Conclusion

In summary, selecting the optimal machine learning framework re-
quires a thorough evaluation of various options against criteria such
as usability, community support, performance, hardware compatibil-
ity, and model conversion capabilities. There is no one-size-fits-all so-
lution, as the right framework depends on specific constraints and use
cases.

We first introduced the necessity of machine learning frameworks
like TensorFlow and PyTorch. These frameworks offer features such
as tensors for handling multi-dimensional data, computational graphs
for defining and optimizing model operations, and a suite of tools in-
cluding loss functions, optimizers, and data loaders that streamline
model development.


https://tvm.apache.org/2021/12/15/tvm-unity
https://www.tensorflow.org/xla/architecture
https://www.tensorflow.org/xla/architecture
https://developer.nvidia.com/blog/cutlass-linear-algebra-cuda/
https://developer.nvidia.com/tensorrt
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Advanced features further improve these frameworks’ usability, en-
abling tasks like fine-tuning large pre-trained models and facilitating
federated learning. These capabilities are critical for developing so-
phisticated machine learning models efficiently.

Embedded AI or TinyML frameworks, such as TensorFlow Lite
Micro, provide specialized tools for deploying models on resource-
constrained platforms. TensorFlow Lite Micro, for instance, offers
comprehensive optimization tooling, including quantization map-
ping and kernel optimizations, to ensure high performance on
microcontroller-based platforms like Arm Cortex-M and RISC-V
processors. Frameworks specifically built for specialized hardware
like CMSIS-NN on Cortex-M processors can further maximize perfor-
mance but sacrifice portability. Integrated frameworks from processor
vendors tailor the stack to their architectures, unlocking the full
potential of their chips but locking you into their ecosystem.

Ultimately, choosing the right framework involves finding the best
match between its capabilities and the requirements of the target
platform. This requires balancing trade-offs between performance
needs, hardware constraints, model complexity, and other factors.
Thoroughly assessing the intended models and use cases and evaluat-
ing options against key metrics will guide developers in selecting the
ideal framework for their machine learning applications.

6.12 Resources

Here is a curated list of resources to support students and instructors
in their learning and teaching journeys. We are continuously working
on expanding this collection and will add new exercises soon.

1 Slides

These slides are a valuable tool for instructors to deliver lectures
and for students to review the material at their own pace. We
encourage students and instructors to leverage these slides to
improve their understanding and facilitate effective knowledge
transfer.

e Frameworks overview.
* Embedded systems software.
¢ Inference engines: TF vs. TFLite.

e TF flavors: TF vs. TFLite vs. TFLite Micro.



https://docs.google.com/presentation/d/1zbnsihiO68oIUE04TVJEcDQ_Kyec4mhdQkIG6xoR0DY/edit#slide=id.g1ff94734162_0_0
https://docs.google.com/presentation/d/1BK2M2krnI24jSWO0r8tXegl1wgflGZTJyMkjfGolURI/edit#slide=id.g202a6885eb3_0_0
https://docs.google.com/presentation/d/1Jr7HzdZ7YaKO6KY9HBGbOG0BrTnKhbboQtf9d6xy3Ls/edit?usp=drive_link
https://docs.google.com/presentation/d/1_DwBbas8wAVWnJ0tbOorqotf9Gns1qNc3JJ6tw8bce0/edit?usp=drive_link
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¢ TFLite Micro:
- TFLite Micro Big Picture.
— TFLite Micro Interpreter.
- TFLite Micro Model Format.
— TFLite Micro Memory Allocation.
— TFLite Micro NN Operations.

! Videos

* Coming soon.

O Exercises

To reinforce the concepts covered in this chapter, we have curated
a set of exercises that challenge students to apply their knowl-
edge and deepen their understanding.

e Exercise 9
e Exercise 10

e Exercise 11



https://docs.google.com/presentation/d/1XdwcZS0pz6kyuk6Vx90kE11hwUMAtS1cMoFQHZAxS20/edit?usp=drive_link
https://docs.google.com/presentation/d/10llaugp6EroGekFzB1pAH1OJ1dpJ4d7yxKglK1BsqlI/edit?usp=drive_link&resourcekey=0-C6_PHSaI6u4x0Mv2KxWKbg
https://docs.google.com/presentation/d/123kdwjRXvbukyaOBvdp0PJpIs2JSxQ7GoDjB8y0FgIE/edit?usp=drive_link
https://docs.google.com/presentation/d/1_sHuWa3DDTCB9mBzKA4ElPWaUFA8oOelqHCBOHmsvC4/edit?usp=drive_link
https://docs.google.com/presentation/d/1ZwLOLvYbKodNmyuKKGb_gD83NskrvNmnFC0rvGugJlY/edit?usp=drive_link
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Chapter 7

Al Training

Training is central to developing accurate and useful Al systems using
machine learning techniques. At a high level, training involves feed-
ing data into machine learning algorithms so they can learn patterns
and make predictions. However, effectively training models requires
tackling various challenges around data, algorithms, optimization of
model parameters, and enabling generalization. This chapter will ex-
plore the nuances and considerations around training machine learn-
ing models.

Figure 7.1: DALL-E 3 Prompt:
An illustration for Al training, de-
picting a neural network with neu-
rons that are being repaired and
firing. The scene includes a vast
network of neurons, each glow-
ing and firing to represent activity
and learning. Among these neu-
rons, small figures resembling en-
gineers and scientists are actively
working, repairing and tweaking
the neurons.  These miniature
workers symbolize the process of
training the network, adjusting
weights and biases to achieve con-
vergence. The entire scene is a vi-
sual metaphor for the intricate and
collaborative effort involved in Al
training, with the workers repre-
senting the continuous optimiza-
tion and learning within a neural
network. The background is a com-
plex array of interconnected neu-
rons, creating a sense of depth and
complexity.
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@ Learning Objectives

¢ Understand the fundamental mathematics of neural net-
works, including linear transformations, activation func-
tions, loss functions, backpropagation, and optimization
via gradient descent.

* Learn how to effectively leverage data for model training
through proper splitting into train, validation, and test sets
to enable generalization.

¢ Learn various optimization algorithms like stochastic gra-
dient descent and adaptations like momentum and Adam
that accelerate training.

¢ Understand hyperparameter tuning and regularization
techniques to improve model generalization by reducing
overfitting.

¢ Learn proper weight initialization strategies matched to
model architectures and activation choices that accelerate
convergence.

¢ Identify the bottlenecks posed by key operations like ma-
trix multiplication during training and deployment.

* Learn how hardware improvements like GPUs, TPUs, and
specialized accelerators speed up critical math operations
to accelerate training.

¢ Understand parallelization techniques, both data and
model parallelism, to distribute training across multiple de-
vices and accelerate system throughput.

7.1 Overview

Training is critical for developing accurate and useful Al systems using
machine learning. The training creates a machine learning model that
can generalize to new, unseen data rather than memorizing the training
examples. This is done by feeding training data into algorithms that
learn patterns from these examples by adjusting internal parameters.
The algorithms minimize a loss function, which compares their pre-
dictions on the training data to the known labels or solutions, guiding
the learning. Effective training often requires high-quality, represen-
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tative data sets large enough to capture variability in real-world use
cases.

It also requires choosing an algorithm suited to the task, whether
a neural network for computer vision, a reinforcement learning algo-
rithm for robotic control, or a tree-based method for categorical predic-
tion. Careful tuning is needed for the model structure, such as neural
network depth and width, and learning parameters like step size and
regularization strength.

Techniques to prevent overfitting like regularization penalties and
validation with held-out data, are also important. Overfitting can oc-
cur when a model fits the training data too closely, failing to generalize
to new data. This can happen if the model is too complex or trained
too long.

To avoid overfitting, regularization techniques can help constrain the
model. One regularization method is adding a penalty term to the loss
function that discourages complexity, like the L2 norm of the weights.
This penalizes large parameter values. Another technique is dropout,
where a percentage of neurons is randomly set to zero during training.
This reduces neuron co-adaptation.

Validation methods also help detect and avoid overfitting. Part of
the training data is held out from the training loop as a validation set.
The model is evaluated on this data. If validation error increases while
training error decreases, overfitting occurs. The training can then be
stopped early or regularized more strongly. Regularization and valida-
tion enable models to train to maximum capability without overfitting
the training data.

Training takes significant computing resources, especially for deep
neural networks used in computer vision, natural language processing,
and other areas. These networks have millions of adjustable weights
that must be tuned through extensive training. Hardware improve-
ments and distributed training techniques have enabled training ever
larger neural nets that can achieve human-level performance on some
tasks.

In summary, some key points about training:

¢ Data is crucial: Machine learning models learn from examples
in training data. More high-quality, representative data leads to
better model performance. Data needs to be processed and for-
matted for training.

e Algorithms learn from data: Different algorithms (neural net-
works, decision trees, etc.) have different approaches to finding
patterns in data. Choosing the right algorithm for the task is im-
portant.
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¢ Training refines model parameters: Model training adjusts in-
ternal parameters to find patterns in data. Advanced models like
neural networks have many adjustable weights. Training itera-
tively adjusts weights to minimize a loss function.

* Generalization is the goal: A model that overfits the train-
ing data will not generalize well. Regularization techniques
(dropout, early stopping, etc.) reduce overfitting. Validation
data is used to evaluate generalization.

* Training takes compute resources: Training complex models
requires significant processing power and time. Hardware
improvements and distributed training across GPUs/TPUs have
enabled advances.

We will walk you through these details in the rest of the sections. Un-
derstanding how to effectively leverage data, algorithms, parameter
optimization, and generalization through thorough training is essen-
tial for developing capable, deployable Al systems that work robustly
in the real world.

7.2 Mathematics of Neural Networks

Deep learning has revolutionized machine learning and artificial intel-
ligence, enabling computers to learn complex patterns and make intel-
ligent decisions. The neural network is at the heart of the deep learning
revolution, and as discussed in section 3, “Deep Learning Primer,” it
is a cornerstone in some of these advancements.

Neural networks are made up of simple functions layered on each
other. Each layer takes in some data, performs some computation, and
passes it to the next layer. These layers learn progressively high-level
features useful for the tasks the network is trained to perform. For ex-
ample, in a network trained for image recognition, the input layer may
take in pixel values, while the next layers may detect simple shapes
like edges. The layers after that may detect more complex shapes like
noses, eyes, etc. The final output layer classifies the image as a whole.

The network in a neural network refers to how these layers are con-
nected. Each layer’s output is considered a set of neurons, which are
connected to neurons in the subsequent layers, forming a “network.”
The way these neurons interact is determined by the weights between
them, which model synaptic strengths similar to that of a brain’s neu-
ron. The neural network is trained by adjusting these weights. Con-
cretely, the weights are initially set randomly, then input is fed in, the
output is compared to the desired result, and finally, the weights are
tweaked to improve the network. This process is repeated until the net-
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work reliably minimizes the loss, indicating it has learned the patterns
in the data.

How is this process defined mathematically? Formally, neural net-
works are mathematical models that consist of alternating linear and
nonlinear operations, parameterized by a set of learnable weights that
are trained to minimize some loss function. This loss function mea-
sures how good our model is concerning fitting our training data, and
it produces a numerical value when evaluated on our model against
the training data. Training neural networks involves repeatedly evalu-
ating the loss function on many different data points to measure how
good our model is, then continuously tweaking the weights of our
model using backpropagation so that the loss decreases, ultimately op-
timizing the model to fit our data.

7.2.1 Neural Network Notation

The core of a neural network can be viewed as a sequence of alternating
linear and nonlinear operations, as shown in Figure 7.2.

Input Layer Hidden Layer Output Layer

N ) ) A
a; = f(Ciliwiyai) ye=g(X N, wiray)

Neural networks are structured with layers of neurons connected by
weights (representing linear operations) and activation functions (rep-
resenting nonlinear operations). By examining the figure, we see how
information flows through the network, starting from the input layer,
passing through one or more hidden layers, and finally reaching the
output layer. Each connection between neurons represents a weight,

Figure 7.2: Neural network di-
agram. Source: astroML.
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while each neuron typically applies a nonlinear activation function to
its inputs.

The neural network operates by taking an input vector x; and pass-
ing it through a series of layers, each of which performs linear and
non-linear operations. The output of the network at each layer A; can
be represented as:

N
i=1
Where:

e N - The total number of input features.

¢ z, - The individual input feature, where 7 ranges from 1 to N.

* w;; - The weights connecting neuron 7 in one layer to neuron j in
the next layer, which are adjusted during training.

e f(6) - The non-linear activation function applied at each layer
(e.g., ReLU, softmax, etc.).

* A; - The output of the neural network at each layer j, where j
denotes the layer number.

In the context of Figure 7.2, x,, %, 3,24, and x5 represent the input
features. Each input neuron x; corresponds to one feature of the in-
put data. The arrows from the input layer to the hidden layer indicate
connections between the input neurons and the hidden neurons, with
each connection associated with a weight w, ;.

The hidden layer consists of neurons a;,a,,a3, and a,, each receiv-
ing input from all the neurons in the input layer. The weights w;; con-
nect the input neurons to the hidden neurons. For example, w,; is the
weight connecting input x; to hidden neuron a;.

The number of nodes in each layer and the total number of layers
together define the architecture of the neural network. In the first layer
(input layer), the number of nodes corresponds to the dimensionality
of the input data, while in the last layer (output layer), the number of
nodes corresponds to the dimensionality of the output. The number
of nodes in the intermediate layers can be set arbitrarily, allowing flex-
ibility in designing the network architecture.

The weights, which determine how each layer of the neural network
interacts with the others, are matrices of real numbers. Additionally,
each layer typically includes a bias vector, but we are ignoring it here
for simplicity. The weight matrix W connecting layer j —1 to layer j
has the dimensions:

W, € R%*di
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where d; is the number of nodes in layer j, and d;_, is the number
of nodes in the previous layer j — 1.

The final output y,, of the network is obtained by applying another
activation function g(6) to the weighted sum of the hidden layer out-

puts:

M
y=9 (Z wjkAj)
=1
Where:

e M - The number of hidden neurons in the final layer before the
output.

* wj, - The weight between hidden neuron a; and output neuron
Y-

* g(0) - The activation function applied to the weighted sum of the
hidden layer outputs.

Our neural network, as defined, performs a sequence of linear and
nonlinear operations on the input data (x;) to obtain predictions (y;),
which hopefully is a good answer to what we want the neural network
to do on the input (i.e., classify if the input image is a cat or not). Our
neural network may then be represented succinctly as a function N
which takes in an input # € R% parameterized by W7, ...,W,,, and pro-
duces the final output y:

y=N(z;W,...,W,) where A, =z

This equation indicates that the network starts with the input 4, =
and iteratively computes A; at each layer using the parameters W; until
it produces the final output y at the output layer.

Next, we will see how to evaluate this neural network against train-
ing data by introducing a loss function.

i Note

Why are the nonlinear operations necessary? If we only had lin-
ear layers, the entire network would be equivalent to a single lin-
ear layer consisting of the product of the linear operators. Hence,
the nonlinear functions play a key role in the power of neural
networks as they improve the neural network’s ability to fit func-
tions.
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1 Note

Convolutions are also linear operators and can be cast as a matrix
multiplication.

7.2.2 Loss Function as a Measure of Goodness of Fit
against Training Data

After defining our neural network, we are given some training data,
which is a set of points (z;, y;) for j =1 — M, where M is the total num-
ber of samples in the dataset, and j indexes each sample. We want to
evaluate how good our neural network is at fitting this data. To do this,
we introduce a loss function, which is a function that takes the output
of the neural network on a particular datapoint g]j =N(z Wi, w,,)
and compares it against the “label” of that particular datapoint (the
corresponding y,), and outputs a single numerical scalar (i.e., one real
number) that represents how “good” the neural network fits that par-
ticular data point; the final measure of how good the neural network
is on the entire dataset is therefore just the average of the losses across
all data points.

There are many different types of loss functions; for example, in the
case of image classification, we might use the cross-entropy loss func-
tion, which tells us how well two vectors representing classification
predictions compare (i.e., if our prediction predicts that an image is
more likely a dog, but the label says it is a cat, it will return a high
“loss,” indicating a bad fit).

Mathematically, a loss function is a function that takes in two real-
valued vectors, one representing the predicted outputs of the neural
network and the other representing the true labels, and outputs a sin-
gle numerical scalar representing the error or “loss.”

L:R% xR — R

For a single training example, the loss is given by:

L(N(xj;le‘"aWn)ayj)

where §; = N(x;;Wy,...,W,,) is the predicted output of the neural
network for the input x;, and y; is the true label.

The total loss across the entire dataset, Ly, is then computed as
the average loss across all data points in the training data:
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Loss Function for Optimizing Neural Network Model on a
Dataset

1 M
qull = MZL(N(:E]?WhWn)vy])
j=1

7.2.3 Training Neural Networks with Gradient Descent

Now that we can measure how well our network fits the training data,
we can optimize the neural network weights to minimize this loss. In
this context, we are denoting W; as the weights for each layer ¢ in the
network. At a high level, we tweak the parameters of the real-valued
matrices ;s to minimize the loss function L,;;,. Overall, our mathe-
matical objective is

Neural Network Training Objective

minWI,...,W"qull
1M
= miny,, w77 _X;L(N(a:j; Wy, .. W,,),y;)
=

So, how do we optimize this objective? Recall from calculus that
minimizing a function can be done by taking the function’s derivative
concerning the input parameters and tweaking the parameters in the
gradient direction. This technique is called gradient descent and con-
cretely involves calculating the derivative of the loss function L ,,;, con-
cerning Wy, ...,W,, to obtain a gradient for these parameters to take a
step in, then updating these parameters in the direction of the gradient.
Thus, we can train our neural network using gradient descent, which
repeatedly applies the update rule.

Gradient Descent Update Rule

OL .
W, :=W,—A BTG fori=1..n

%

i Note

In practice, the gradient is computed over a minibatch of data
points to improve computational efficiency. This is called
stochastic gradient descent or batch gradient descent.




Figure 7.3: Gradient descent.
Source: Towards Data Science.
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Where ) is the stepsize or learning rate of our tweaks, in training
our neural network, we repeatedly perform the step above until con-
vergence, or when the loss no longer decreases. Figure 7.3 illustrates
this process: we want to reach the minimum point, which’s done by
following the gradient (as illustrated with the blue arrows in the fig-
ure). This prior approach is known as full gradient descent since we
are computing the derivative concerning the entire training data and
only then taking a single gradient step; a more efficient approach is to
calculate the gradient concerning just a random batch of data points
and then taking a step, a process known as batch gradient descent or
stochastic gradient descent (Robbins and Monro 1951), which is more
efficient since now we are taking many more steps per pass of the entire
training data. Next, we will cover the mathematics behind computing
the gradient of the loss function concerning the W;s, a process known
as backpropagation.

’ Initial weight
Loss / Cost ‘\\ P
.\
\\\ Y
‘ Gradient TR Minimum Cost
aL 2 aL
aw w
L — S —
Weight

7.2.4 Backpropagation

Training neural networks involve repeated applications of the gradient
descent algorithm, which involves computing the derivative of the loss
function with respect to the W;s. How do we compute the loss deriva-
tive concerning the W;s, given that the ;s are nested functions of each



CHAPTER 7. AI TRAINING 185

other in a deep neural network? The trick is to leverage the chain rule:
we can compute the derivative of the loss concerning the W;s by re-
peatedly applying the chain rule in a complete process known as back-
propagation. Specifically, we can calculate the gradients by computing
the derivative of the loss concerning the outputs of the last layer, then
progressively use this to compute the derivative of the loss concerning
each prior layer to the input layer. This process starts from the end of
the network (the layer closest to the output) and progresses backwards,
and hence gets its name backpropagation.

Let’s break this down. We can compute the derivative of the loss con-
cerning the outputs of each layer of the neural network by using repeated
applications of the chain rule.

0L 0A, OLgy,
oL, 0L, OA,

OLsy  0A
OL a

n—1 8Ln aAn 8qu”
oL, | 0A, | 0L, OA,

n—1
or more generally

Ly 0A; 0Ly 9A, OLyuy
oL, 0L, 9A, 9L, 0A,

1 Note

In what order should we perform this computation? From a com-

putational perspective, performing the calculations from the end

. L dL;, .
to the front is preferable. (i.e: first compute ﬁi” then the prior

terms, rather than start in the middle) since this avoids material-

.. . . . . ALy
izing and computing large jacobians. This is because —54“* is

a vector; hence, any matrix operation that includes this term has
an output that is squished to be a vector. Thus, performing the
computation from the end avoids large matrix-matrix multiplica-
tions by ensuring that the intermediate products are vectors.

i Note

In our notation, we assume the intermediate activations A, are

column vectors, rather than row vectors, hence the chain rule is
oL __ 9L;.n 0L AL _ L 9L,
oL, BLi ﬁ ratherthanTLi—m... oL

(3

i
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After computing the derivative of the loss concerning the output of
each layer, we can easily obtain the derivative of the loss concerning the
parameters, again using the chain rule:

OL _ OL; OL gy

And this is ultimately how the derivatives of the layers” weights are
computed using backpropagation! What does this concretely look like
in a specific example? Below, we walk through a specific example of a
simple 2-layer neural network on a regression task using an MSE loss
function with 100-dimensional inputs and a 30-dimensional hidden
layer:

Example of Backpropagation
Suppose we have a two-layer neural network

L, =W, 4,
A, = ReLU(L,)
Ly =WyA,
Ay = ReLU(L,)
NN(z)=Let Ay = = then output A,

where W, € R30%100 and W, € R'*30. Furthermore, sup-
pose we use the MSE loss function:

L(z,y) = (z—y)*
We wish to compute

OL(NN(z),y)

oW, fori=1,2
Note the following:
6L((92,y) 9% (z—y)
OReLU(z) . (0 forz<0
Ox 5_{1 for:nZO}Q(S
OWA T
o4 0=
8WA5 AT

ow
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Then we have
OL(NN(x).y) _ Ly OA, IL(NN(x),y)
oW,y N oW, 0L, 0A,

= (2L(NN(z)—y) © ReLU’ (L,)) AT

and
OL(NN(z),y) 0Ly 0A; 0Ly 0Ay OL(NN(x),y)
ow, - OW, 0L, 0A, 0L, 0A,

=[ReLU’(L,) © (WL 2L(NN(z) —y) © ReLU’ (L,)])| AT

@ Tip

Double-check your work by making sure that the shapes are cor-
rect!

¢ All Hadamard products (©) should operate on tensors of
the same shape

¢ All matrix multiplications should operate on matrices that
share a common dimension (i.e., m by n, n by k)

¢ All gradients concerning the weights should have the same
shape as the weight matrices themselves

The entire backpropagation process can be complex, especially for
very deep networks. Fortunately, machine learning frameworks like
PyTorch support automatic differentiation, which performs backprop-
agation for us. In these frameworks, we simply need to specify the for-
ward pass, and the derivatives will be automatically computed for us.
Nevertheless, it is beneficial to understand the theoretical process that
is happening under the hood in these machine-learning frameworks.

i Note

As seen above, intermediate activations A, are reused in back-
propagation. To improve performance, these activations are
cached from the forward pass to avoid being recomputed. How-
ever, activations must be kept in memory between the forward
and backward passes, leading to higher memory usage. If the
network and batch size are large, this may lead to memory issues.
Similarly, the derivatives with respect to each layer’s outputs are
cached to avoid recomputation.
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O Caution 12: Neural Networks with Backpropagation and Gra-
dient Descent

Unlock the math behind powerful neural networks! Deep learn-
ing might seem like magic, but it’s rooted in mathematical prin-
ciples. In this chapter, you’ve broken down neural network nota-
tion, loss functions, and the powerful technique of backpropaga-
tion. Now, prepare to implement this theory with these Colab
notebooks. Dive into the heart of how neural networks learn.
You'll see the math behind backpropagation and gradient de-
scent, updating those weights step-by-step.

CO Open in Colab

7.3 Differentiable Computation Graphs

In general, stochastic gradient descent using backpropagation can
be performed on any computational graph that a user may define,
provided that the operations of the computation are differentiable.
As such, generic deep learning libraries like PyTorch and Tensorflow
allow users to specify their computational process (i.e., neural net-
works) as a computational graph. Backpropagation is automatically
performed via automatic differentiation when stochastic gradient
descent is performed on these computational graphs. Framing Al
training as an optimization problem on differentiable computation
graphs is a general way to understand what is happening under the
hood with deep learning systems.

The structure depicted in Figure 7.4 showcases a segment of a differ-
entiable computational graph. In this graph, the input ‘x” is processed
through a series of operations: it is first multiplied by a weight matrix
‘W’ (MatMul), then added to a bias ‘b’ (Add), and finally passed to an
activation function, Rectified Linear Unit (ReLU). This sequence of op-
erations gives us the output C. The graph’s differentiable nature means
that each operation has a well-defined gradient. Automatic differenti-
ation, as implemented in ML frameworks, leverages this property to
efficiently compute the gradients of the loss with respect to each pa-
rameter in the network (e.g., ‘W’ and ‘b’).

7.4 Training Data

To enable effective neural network training, the available data must be
split into training, validation, and test sets. The training set is used


https://colab.research.google.com/github/jigsawlabs-student/pytorch-intro-curriculum/blob/main/5-training-mathematically/20-backpropagation-and-gradient-descent.ipynb
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to train the model parameters. The validation set evaluates the model
during training to tune hyperparameters and prevent overfitting. The
test set provides an unbiased final evaluation of the trained model’s
performance.

Maintaining clear splits between train, validation, and test sets with
representative data is crucial to properly training, tuning, and evalu-
ating models to achieve the best real-world performance. To this end,
we will learn about the common pitfalls or mistakes people make when
creating these data splits.

Table 7.1 compares the differences between training, validation, and
test data splits:

Table 7.1: Comparing training, validation, and test data splits.

Data Split  Purpose Typical Size

Training Train the model parameters 60-80% of total

Set data

Validation  Evaluate model during training to 20% of total

Set tune hyperparameters and prevent  data
overfitting

Test Set Provide unbiased evaluation of final =~ 20% of total

trained model data

Figure 7.4: Computational
Graph. Source: TensorFlow.
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7.4.1 Dataset Splits
7.4.1.1 Training Set

The training set is used to train the model. It is the largest subset, typi-
cally 60-80% of the total data. The model sees and learns from the train-
ing data to make predictions. A sufficiently large and representative
training set is required for the model to learn the underlying patterns
effectively.

7.4.1.2 Validation Set

The validation set evaluates the model during training, usually after
each epoch. Typically, 20% of the data is allocated for the validation
set. The model does not learn or update its parameters based on the
validation data. It is used to tune hyperparameters and make other
tweaks to improve training. Monitoring metrics like loss and accuracy
on the validation set prevents overfitting on just the training data.

7.4.1.3 Test Set

The test set acts as a completely unseen dataset that the model did not
see during training. It is used to provide an unbiased evaluation of the
final trained model. Typically, 20% of the data is reserved for testing.
Maintaining a hold-out test set is vital for obtaining an accurate esti-
mate of how the trained model would perform on real-world unseen
data. Data leakage from the test set must be avoided at all costs.

The relative proportions of the training, validation, and test sets can
vary based on data size and application. However, following the gen-
eral guidelines for a 60/20/20 split is a good starting point. Careful
data splitting ensures models are properly trained, tuned, and evalu-
ated to achieve the best performance.

Video 5 explains how to properly split the dataset into training, val-
idation, and testing sets, ensuring an optimal training process.

! Important 5: Train/Dev/Test Sets

https:/ /www.youtube.com/watch?v=1waHIpKiNyY

7.4.2 Common Pitfalls and Mistakes


https://www.youtube.com/watch?v=1waHlpKiNyY
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7.4.2.1 Insufficient Training Data

Allocating too little data to the training set is a common mistake when
splitting data that can severely impact model performance. If the train-
ing set is too small, the model will not have enough samples to effec-
tively learn the true underlying patterns in the data. This leads to high
variance and causes the model to fail to generalize well to new data.

For example, if you train an image classification model to recognize
handwritten digits, providing only 10 or 20 images per digit class
would be completely inadequate. The model would need more
examples to capture the wide variances in writing styles, rotations,
stroke widths, and other variations.

As a rule of thumb, the training set size should be at least hundreds
or thousands of examples for most machine learning algorithms to
work effectively. Due to the large number of parameters, the training
set often needs to be in the tens or hundreds of thousands for deep
neural networks, especially those using convolutional layers.

Insufficient training data typically manifests in symptoms like high
error rates on validation/test sets, low model accuracy, high variance,
and overfitting on small training set samples. Collecting more quality
training data is the solution. Data augmentation techniques can also
help virtually increase the size of training data for images, audio, etc.

Carefully factoring in the model complexity and problem difficulty
when allocating training samples is important to ensure sufficient data
is available for the model to learn successfully. Following guidelines
on minimum training set sizes for different algorithms is also recom-
mended. More training data is needed to maintain the overall success
of any machine learning application.

Consider Figure 7.5 where we try to classify/split datapoints into
two categories (here, by color): On the left, overfitting is depicted by a
model that has learned the nuances in the training data too well (either
the dataset was too small or we ran the model for too long), causing it
to follow the noise along with the signal, as indicated by the line’s ex-
cessive curves. The right side shows underfitting, where the model’s
simplicity prevents it from capturing the dataset’s underlying struc-
ture, resulting in a line that does not fit the data well. The center graph
represents an ideal fit, where the model balances well between general-
ization and fitting, capturing the main trend of the data without being
swayed by outliers. Although the model is not a perfect fit (it misses
some points), we care more about its ability to recognize general pat-
terns rather than idiosyncratic outliers.

Figure 7.6 illustrates the process of fitting the data over time. When
training, we search for the “sweet spot” between underfitting and over-
fitting. At first when the model hasn’t had enough time to learn the pat-
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Overfitting Right Fit Underfitting

Figure 7.5: Data fitting: overfit-
ting, right fit, and underfitting.
Source: MathWorks.

terns in the data, we find ourselves in the underfitting zone, indicated
by high error rates on the validation set (remember that the model is
trained on the training set and we test its generalizability on the vali-
dation set, or data it hasn’t seen before). At some point, we achieve a
global minimum for error rates, and ideally we want to stop the train-
ing there. If we continue training, the model will start “memorizing”
or getting to know the data too well that the error rate starts going back
up, since the model will fail to generalize to data it hasn't seen before.

A

Error

Figure 7.6: Fitting the data q X
overtime. Source: IBM. |
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Video 6 provides an overview of bias and variance and the relation-
ship between the two concepts and model accuracy.
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1 Important 6: Bias/Variance

https:/ /www.youtube.com/watch?v=S5jQyLhQIXSM

7.4.2.2 Data Leakage Between Sets

Data leakage refers to the unintentional transfer of information
between the training, validation, and test sets. This violates the
fundamental assumption that the splits are mutually exclusive. Data
leakage leads to seriously compromised evaluation results and
inflated performance metrics.

A common way data leakage occurs is if some samples from the test
set are inadvertently included in the training data. When evaluating
the test set, the model has already seen some of the data, which gives
overly optimistic scores. For example, if 2% of the test data leaks into
the training set of a binary classifier, it can result in an accuracy boost
of up to 20%!

If the data splits are not done carefully, more subtle forms of leak-
age can happen. If the splits are not properly randomized and shuf-
fled, samples that are close to each other in the dataset may end up in
the same split, leading to distribution biases. This creates information
bleed through based on proximity in the dataset.

Another case is when datasets have linked, inherently connected
samples, such as graphs, networks, or time series data. Naive splitting
may isolate connected nodes or time steps into different sets. Models
can make invalid assumptions based on partial information.

Preventing data leakage requires creating solid separation between
splits—no sample should exist in more than one split. Shuffling and
randomized splitting help create robust divisions. Cross-validation
techniques can be used for more rigorous evaluation. Detecting leak-
age is difficult, but telltale signs include models doing way better on
test vs. validation data.

Data leakage severely compromises the validity of the evaluation be-
cause the model has already partially seen the test data. No amount
of tuning or complex architectures can substitute for clean data splits.
It is better to be conservative and create complete separation between
splits to avoid this fundamental mistake in machine learning pipelines.

7.4.2.3 Small or Unrepresentative Validation Set

The validation set is used to assess model performance during training
and to fine-tune hyperparameters. For reliable and stable evaluations,
the validation set should be sufficiently large and representative of the


https://www.youtube.com/watch?v=SjQyLhQIXSM
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real data distribution. However, this can make model selection and
tuning more challenging.

For example, if the validation set only contains 100 samples, the met-
rics calculated will have a high variance. Due to noise, the accuracy
may fluctuate up to 5-10% between epochs. This makes it difficult to
know if a drop in validation accuracy is due to overfitting or natural
variance. With a larger validation set, say 1000 samples, the metrics
will be much more stable.

Additionally, if the validation set is not representative, perhaps miss-
ing certain subclasses, the estimated skill of the model may be inflated.
This could lead to poor hyperparameter choices or premature training
stops. Models selected based on such biased validation sets do not gen-
eralize well to real data.

A good rule of thumb is that the validation set size should be at
least several hundred samples and up to 10-20% of the training set,
while still leaving sufficient samples for training. The splits should
also be stratified, meaning that the class proportions in the validation
set should match those in the full dataset, especially if working with
imbalanced datasets. A larger validation set representing the original
data characteristics is essential for proper model selection and tuning.

7.4.2.4 Reusing the Test Set Multiple Times

The test set is designed to provide an unbiased evaluation of the fully
trained model only once at the end of the model development process.
Reusing the test set multiple times during development for model eval-
uation, hyperparameter tuning, model selection, etc., can result in over-
fitting on the test data. Instead, reserve the test set for a final evaluation
of the fully trained model, treating it as a black box to simulate its per-
formance on real-world data. This approach provides reliable metrics
to determine whether the model is ready for production deployment.

If the test set is reused as part of the validation process, the model
may start to see and learn from the test samples. This, coupled with
intentionally or unintentionally optimizing model performance on the
test set, can artificially inflate metrics like accuracy.

For example, suppose the test set is used repeatedly for model selec-
tion out of 5 architectures. In that case, the model may achieve 99%
test accuracy by memorizing the samples rather than learning general-
izable patterns. However, when deployed in the real world, the accu-
racy of new data could drop by 60%.

The best practice is to interact with the test set only once at the end
to report unbiased metrics on how the final tuned model would per-
form in the real world. While developing the model, the validation set
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should be used for all parameter tuning, model selection, early stop-
ping, and similar tasks. It's important to reserve a portion, such as 20-
30% of the full dataset, solely for the final model evaluation. This data
should not be used for validation, tuning, or model selection during
development.

Failing to keep an unseen hold-out set for final validation risks opti-
mizing results and overlooking potential failures before model release.
Having some fresh data provides a final sanity check on real-world
efficacy. Maintaining the complete separation of training/validation
from the test set is essential to obtain accurate estimates of model per-
formance. Even minor deviations from a single use of the test set could
positively bias results and metrics, providing an overly optimistic view
of real-world efficacy.

7.4.2.5 Same Data Splits Across Experiments

When comparing different machine learning models or experimenting
with various architectures and hyperparameters, using the same data
splits for training, validation, and testing across the different experi-
ments can introduce bias and invalidate the comparisons.

If the same splits are reused, the evaluation results may be more bal-
anced and accurately measure which model performs better. For ex-
ample, a certain random data split may favor model A over model B
irrespective of the algorithms. Reusing this split will then bias towards
model A.

Instead, the data splits should be randomized or shuffled for each
experimental iteration. This ensures that randomness in the sampling
of the splits does not confer an unfair advantage to any model.

With different splits per experiment, the evaluation becomes more
robust. Each model is tested on a wide range of test sets drawn ran-
domly from the overall population, smoothing out variation and re-
moving correlation between results.

Proper practice is to set a random seed before splitting the data for
each experiment. Splitting should occur after shuffling /resampling as
part of the experimental pipeline. Carrying out comparisons on the
same splits violates the i.i.d (independent and identically distributed)
assumption required for statistical validity.

Unique splits are essential for fair model comparisons. Though
more compute-intensive, randomized allocation per experiment re-
moves sampling bias and enables valid benchmarking. This highlights
the true differences in model performance irrespective of a particular
split’s characteristics.
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7.4.2.6 Failing to Stratify Splits

When splitting data into training, validation, and test sets, failing to
stratify the splits can result in an uneven representation of the target
classes across the splits and introduce sampling bias. This is especially
problematic for imbalanced datasets.

Stratified splitting involves sampling data points such that the pro-
portion of output classes is approximately preserved in each split. For
example, if performing a 70/30 train-test split on a dataset with 60%
negative and 40% positive samples, stratification ensures ~60% nega-
tive and ~40% positive examples in both training and test sets.

Without stratification, random chance could result in the training
split having 70% positive samples while the test has 30% positive sam-
ples. The model trained on this skewed training distribution will not
generalize well. Class imbalance also compromises model metrics like
accuracy.

Stratification works best when done using labels, though proxies like
clustering can be used for unsupervised learning. It becomes essential
for highly skewed datasets with rare classes that could easily be omit-
ted from splits.

Libraries like Scikit-Learn have stratified splitting methods built into
them. Failing to use them could inadvertently introduce sampling bias
and hurt model performance on minority groups. After performing
the splits, the overall class balance should be examined to ensure even
representation across the splits.

Stratification provides a balanced dataset for both model training
and evaluation. Though simple random splitting is easy, mindful of
stratification needs, especially for real-world imbalanced data, results
in more robust model development and evaluation.

7.4.2.7 Ignoring Time Series Dependencies

Time series data has an inherent temporal structure with observations
depending on past context. Naively splitting time series data into train
and test sets without accounting for this dependency leads to data leak-
age and lookahead bias.

For example, simply splitting a time series into the first 70% of train-
ing and the last 30% as test data will contaminate the training data
with future data points. The model can use this information to “peek”
ahead during training.

This results in an overly optimistic evaluation of the model’s perfor-
mance. The model may appear to forecast the future accurately but
has actually implicitly learned based on future data, which does not
translate to real-world performance.
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Proper time series cross-validation techniques, such as forward
chaining, should be used to preserve order and dependency. The test
set should only contain data points from a future time window that
the model was not exposed to for training.

Failing to account for temporal relationships leads to invalid causal-
ity assumptions. If the training data contains future points, the model
may also need to learn how to extrapolate forecasts further.

Maintaining the temporal flow of events and avoiding lookahead
bias is key to properly training and testing time series models. This
ensures they can truly predict future patterns and not just memorize
past training data.

7.4.2.8 No Unseen Data for Final Evaluation

A common mistake when splitting data is failing to set aside some por-
tion of the data just for the final evaluation of the completed model.
All of the data is used for training, validation, and test sets during de-
velopment.

This leaves no unseen data to get an unbiased estimate of how the
final tuned model would perform in the real world. The metrics on
the test set used during development may only partially reflect actual
model skills.

For example, choices like early stopping and hyperparameter tun-
ing are often optimized based on test set performance. This couples
the model to the test data. An unseen dataset is needed to break this
coupling and get true real-world metrics.

Best practice is to reserve a portion, such as 20-30% of the full dataset,
solely for final model evaluation. This data should not be used for val-
idation, tuning, or model selection during development.

Saving some unseen data allows for evaluating the completely
trained model as a black box on real-world data. This provides
reliable metrics to decide whether the model is ready for production
deployment.

Failing to keep an unseen hold-out set for final validation risks opti-
mizing results and overlooking potential failures before model release.
Having some fresh data provides a final sanity check on real-world
efficacy.

7.4.2.9 Overoptimizing on the Validation Set

The validation set is meant to guide the model training process, not
serve as additional training data. Overoptimizing the validation set to
maximize performance metrics treats it more like a secondary training
set, leading to inflated metrics and poor generalization.
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For example, techniques like extensively tuning hyperparameters or
adding data augmentations targeted to boost validation accuracy can
cause the model to fit too closely to the validation data. The model may
achieve 99% validation accuracy but only 55% test accuracy.

Similarly, reusing the validation set for early stopping can also opti-
mize the model specifically for that data. Stopping at the best valida-
tion performance overfits noise and fluctuations caused by the small
validation size.

The validation set serves as a proxy to tune and select models. How-
ever, the goal remains maximizing real-world data performance, not
the validation set. Minimizing the loss or error on validation data does
not automatically translate to good generalization.

A good approach is to keep the use of the validation set minimal—
hyperparameters can be tuned coarsely first on training data, for exam-
ple. The validation set guides the training but should not influence or
alter the model itself. It is a diagnostic, not an optimization tool.

When assessing performance on the validation set, care should be
taken not to overfit. Tradeoffs are needed to build models that per-
form well on the overall population and are not overly tuned to the
validation samples.

7.5 Optimization Algorithms

Stochastic gradient descent (SGD) is a simple yet powerful optimiza-
tion algorithm for training machine learning models. It works by esti-
mating the gradient of the loss function concerning the model parame-
ters using a single training example and then updating the parameters
in the direction that reduces the loss.

While conceptually straightforward, SGD needs a few areas for im-
provement. First, choosing a proper learning rate can be difficult—too
small, and progress is very slow; too large, and parameters may os-
cillate and fail to converge. Second, SGD treats all parameters equally
and independently, which may not be ideal in all cases. Finally, vanilla
SGD uses only first-order gradient information, which results in slow
progress on ill-conditioned problems.

7.5.1 Optimizations

Over the years, various optimizations have been proposed to acceler-
ate and improve vanilla SGD. Ruder (2016) gives an excellent overview
of the different optimizers. Briefly, several commonly used SGD opti-
mization techniques include:
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Momentum: Accumulates a velocity vector in directions of persis-
tent gradient across iterations. This helps accelerate progress by damp-
ening oscillations and maintains progress in consistent directions.

Nesterov Accelerated Gradient (NAG): A variant of momentum
that computes gradients at the “look ahead” rather than the current
parameter position. This anticipatory update prevents overshooting
while the momentum maintains the accelerated progress.

Adagrad: An adaptive learning rate algorithm that maintains a per-
parameter learning rate scaled down proportionate to each parame-
ter’s historical sum of gradients. This helps eliminate the need to tune
learning rates (Duchi, Hazan, and Singer 2010) manually.

Adadelta: A modification to Adagrad restricts the window of accu-
mulated past gradients, thus reducing the aggressive decay of learning
rates (Zeiler 2012).

RMSProp: Divides the learning rate by an exponentially decaying
average of squared gradients. This has a similar normalizing effect as
Adagrad but does not accumulate the gradients over time, avoiding a
rapid decay of learning rates (Hinton 2017).

Adam: Combination of momentum and rmsprop where rmsprop
modifies the learning rate based on the average of recent magnitudes of
gradients. Displays very fast initial progress and automatically tunes
step sizes (Kingma and Ba 2014).

AMSGrad: A variant of Adam that ensures stable convergence by
maintaining the maximum of past squared gradients, preventing the
learning rate from increasing during training (S. J. Reddi, Kale, and
Kumar 2019).

Of these methods, Adam has widely considered the go-to optimiza-
tion algorithm for many deep-learning tasks. It consistently outper-
forms vanilla SGD in terms of training speed and performance. Other
optimizers may be better suited in some cases, particularly for simpler
models.

7.5.2 Tradeoffs

Table 7.2 is a pros and cons table for some of the main optimization
algorithms for neural network training;
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Table 7.2: Comparing the pros and cons of different optimization algo-

rithms.
Algorithm  Pros Cons
Momentum * Faster convergence ¢ Requires tuning
due to acceleration of momentum
along gradients parameter
® Less oscillation than
vanilla SGD
Nesterov ¢ Faster than standard * More complex to
Accelerated momentum in some understand
Gradient cases intuitively
(NAG) * Anticipatory updates
prevent overshooting
Adagrad ¢ Eliminates need to ¢ Learning rate
tune learning rates may decay too
manually quickly on dense
¢ Performs well on gradients
sparse gradients
Adadelta ® Less aggressive e Still sensitive to
learning rate decay initial learning
than Adagrad rate value
RMSProp * Automatically adjusts ¢ No major
learning rates downsides
* Works well in practice
Adam ¢ Combination of ¢ Slightly worse
momentum and generalization
adaptive learning performance in
rates some cases
¢ Efficient and fast
convergence
AMSGrad * Improvement to * Notas
Adam addressing extensively

generalization issue

used/tested as
Adam

7.5.3 Benchmarking Algorithms

No single method is best for all problem types. This means we need
comprehensive benchmarking to identify the most effective optimizer
for specific datasets and models. The performance of algorithms like
Adam, RMSProp, and Momentum varies due to batch size, learning
rate schedules, model architecture, data distribution, and regulariza-
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tion. These variations underline the importance of evaluating each op-
timizer under diverse conditions.

Take Adam, for example, who often excels in computer vision tasks,
unlike RMSProp, who may show better generalization in certain natu-
ral language processing tasks. Momentum’s strength lies in its accel-
eration in scenarios with consistent gradient directions, whereas Ada-
grad’s adaptive learning rates are more suited for sparse gradient prob-
lems.

This wide array of interactions among optimizers demonstrates the
challenge of declaring a single, universally superior algorithm. Each
optimizer has unique strengths, making it crucial to evaluate various
methods to discover their optimal application conditions empirically.

A comprehensive benchmarking approach should assess the speed
of convergence and factors like generalization error, stability, hyperpa-
rameter sensitivity, and computational efficiency, among others. This
entails monitoring training and validation learning curves across mul-
tiple runs and comparing optimizers on various datasets and models
to understand their strengths and weaknesses.

AlgoPerf, introduced by Diirr et al. (2021), addresses the need for
a robust benchmarking system. This platform evaluates optimizer
performance using criteria such as training loss curves, generalization
error, sensitivity to hyperparameters, and computational efficiency.
AlgoPerf tests various optimization methods, including Adam,
LAMB, and Adafactor, across different model types like CNNs and
RNNs/LSTMs on established datasets. It utilizes containerization and
automatic metric collection to minimize inconsistencies and allows for
controlled experiments across thousands of configurations, providing
a reliable basis for comparing optimizers.

The insights gained from AlgoPerf and similar benchmarks are in-
valuable for guiding optimizers’ optimal choice or tuning. By enabling
reproducible evaluations, these benchmarks contribute to a deeper un-
derstanding of each optimizer’s performance, paving the way for fu-
ture innovations and accelerated progress in the field.

7.6 Hyperparameter Tuning

Hyperparameters are important settings in machine learning models
that greatly impact how well your models ultimately perform. Unlike
other model parameters that are learned during training, hyperparam-
eters are specified by the data scientists or machine learning engineers
before training the model.

Choosing the right hyperparameter values enables your models to
learn patterns from data effectively. Some examples of key hyperpa-
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rameters across ML algorithms include:

¢ Neural networks: Learning rate, batch size, number of hidden
units, activation functions

* Support vector machines: Regularization strength, kernel type
and parameters

¢ Random forests: Number of trees, tree depth

¢ K-means: Number of clusters

The problem is that there are no reliable rules of thumb for choos-
ing optimal hyperparameter configurations—you typically have to try
out different values and evaluate performance. This process is called
hyperparameter tuning.

In the early years of modern deep learning, researchers were still
grappling with unstable and slow convergence issues. Common pain
points included training losses fluctuating wildly, gradients exploding
or vanishing, and extensive trial-and-error needed to train networks
reliably. As a result, an early focal point was using hyperparameters
to control model optimization. For instance, seminal techniques like
batch normalization allowed faster model convergence by tuning as-
pects of internal covariate shift. Adaptive learning rate methods also
mitigated the need for extensive manual schedules. These addressed
optimization issues during training, such as uncontrolled gradient di-
vergence. Carefully adapted learning rates are also the primary control
factor for achieving rapid and stable convergence even today.

As computational capacity expanded exponentially in subsequent
years, much larger models could be trained without falling prey to
pure numerical optimization issues. The focus shifted towards gener-
alization - though efficient convergence was a core prerequisite. State-
of-the-art techniques like Transformers brought in parameters in bil-
lions. At such sizes, hyperparameters around capacity, regularization,
ensembling, etc., took center stage for tuning rather than only raw con-
vergence metrics.

The lesson is that understanding the acceleration and stability of the
optimization process itself constitutes the groundwork. Initialization
schemes, batch sizes, weight decays, and other training hyperparame-
ters remain indispensable today. Mastering fast and flawless conver-
gence allows practitioners to expand their focus on emerging needs
around tuning for metrics like accuracy, robustness, and efficiency at
scale.

7.6.1 Search Algorithms

When it comes to the critical process of hyperparameter tuning, there
are several sophisticated algorithms that machine learning practition-
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ers rely on to search through the vast space of possible model config-
urations systematically. Some of the most prominent hyperparameter
search algorithms include:

¢ Grid Search: The most basic search method, where you man-
ually define a grid of values to check for each hyperparameter.
For example, checking learning rates = [0.01, 0.1, 1] and
batch sizes = [32, 64, 128]. The key advantage is simplicity,
but it can lead to an exponential explosion in search space, mak-
ing it time-consuming. It’s best suited for fine-tuning a small
number of parameters.

* Random Search: Instead of defining a grid, you randomly select
values for each hyperparameter from a predefined range or set.
This method is more efficient at exploring a vast hyperparameter
space because it doesn’t require an exhaustive search. However,
it may still miss optimal parameters since it doesn’t systemati-
cally explore all possible combinations.

* Bayesian Optimization: This is an advanced probabilistic ap-
proach for adaptive exploration based on a surrogate function
to model performance over iterations. It is simple and efficient—
it finds highly optimized hyperparameters in fewer evaluation
steps. However, it requires more investment in setup (Snoek,
Larochelle, and Adams 2012).

¢ Evolutionary Algorithms: These algorithms mimic natural se-
lection principles. They generate populations of hyperparam-
eter combinations and evolve them over time-based on perfor-
mance. These algorithms offer robust search capabilities better
suited for complex response surfaces. However, many iterations
are required for reasonable convergence.

¢ Population Based Training (PBT): A method that optimizes hy-
perparameters by training multiple models in parallel, allowing
them to share and adapt successful configurations during train-
ing, combining elements of random search and evolutionary al-
gorithms (Jaderberg et al. 2017).

* Neural Architecture Search: An approach to designing well-
performing architectures for neural networks. Traditionally,
NAS approaches use some form of reinforcement learning to
propose neural network architectures, which are then repeatedly
evaluated (Zoph and Le 2016).
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7.6.2 System Implications

Hyperparameter tuning can significantly impact time to convergence
during model training, directly affecting overall runtime. The right
values for key training hyperparameters are crucial for efficient model
convergence. For example, the hyperparameter’s learning rate controls
the step size during gradient descent optimization. Setting a properly
tuned learning rate schedule ensures the optimization algorithm con-
verges quickly towards a good minimum. Too small a learning rate
leads to painfully slow convergence, while too large a value causes the
losses to fluctuate wildly. Proper tuning ensures rapid movement to-
wards optimal weights and biases.

Similarly, the batch size for stochastic gradient descent impacts con-
vergence stability. The right batch size smooths out fluctuations in pa-
rameter updates to approach the minimum faster. More batch sizes
are needed to avoid noisy convergence, while large batch sizes fail to
generalize and slow down convergence due to less frequent parameter
updates. Tuning hyperparameters for faster convergence and reduced
training duration has direct implications on cost and resource require-
ments for scaling machine learning systems:

* Lower computational costs: Shorter time to convergence means
lower computational costs for training models. ML training of-
ten leverages large cloud computing instances like GPU and TPU
clusters that incur heavy hourly charges. Minimizing training
time directly reduces this resource rental cost, which tends to
dominate ML budgets for organizations. Quicker iteration also
lets data scientists experiment more freely within the same bud-
get.

* Reduced training time: Reduced training time unlocks opportu-
nities to train more models using the same computational budget.
Optimized hyperparameters stretch available resources further,
allowing businesses to develop and experiment with more mod-
els under resource constraints to maximize performance.

* Resource efficiency: Quicker training allows allocating smaller
compute instances in the cloud since models require access to
the resources for a shorter duration. For example, a one-hour
training job allows using less powerful GPU instances compared
to multi-hour training, which requires sustained compute access
over longer intervals. This achieves cost savings, especially for
large workloads.

There are other benefits as well. For instance, faster convergence
reduces pressure on ML engineering teams regarding provision-
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ing training resources. Simple model retraining routines can use
lower-powered resources instead of requesting access to high-priority
queues for constrained production-grade GPU clusters, freeing up
deployment resources for other applications.

7.6.3 Auto Tuners

Given its importance, there is a wide array of commercial offerings to
help with hyperparameter tuning. We will briefly touch on two exam-
ples: one focused on optimization for cloud-scale ML and the other for
machine learning models targeting microcontrollers. Table 7.3 outlines
the key differences:

Table 7.3: Comparison of optimization platforms for different machine
learning use cases.

Target
Use Optimization
Platform Case Techniques Benefits
Google’s Cloud- Bayesian Hides complexity, enabling
Vertex  scale optimization, fast, deployment-ready
Al machine  Population- models with state-of-the-art
learning  Based hyperparameter optimization
training
Edge Microcontrddbgresian Tailors models for
Im- (TinyML) optimization  resource-constrained devices,
pulse’s  models simplifies optimization for
EON embedded deployment
Tuner
7.6.3.1 BigML

Several commercial auto-tuning platforms are available to address this
problem. One solution is Google’s Vertex Al Cloud, which has exten-
sive integrated support for state-of-the-art tuning techniques.

One of the most salient capabilities of Google’s Vertex Al-managed
machine learning platform is efficient, integrated hyperparameter tun-
ing for model development. Successfully training performant ML mod-
els requires identifying optimal configurations for a set of external hy-
perparameters that dictate model behavior, posing a challenging high-
dimensional search problem. Vertex Al simplifies this through Auto-
mated Machine Learning (AutoML) tooling.



7.6. Hyperparameter Tuning 206

Specifically, data scientists can leverage Vertex Al's hyperparameter
tuning engines by providing a labeled dataset and choosing a model
type such as a Neural Network or Random Forest classifier. Vertex
launches a Hyperparameter Search job transparently on the backend,
fully handling resource provisioning, model training, metric tracking,
and result analysis automatically using advanced optimization algo-
rithms.

Under the hood, Vertex AutoML employs various search strategies
to intelligently explore the most promising hyperparameter configu-
rations based on previous evaluation results. Among these, Bayesian
Optimization is offered as it provides superior sample efficiency, re-
quiring fewer training iterations to achieve optimized model quality
compared to standard Grid Search or Random Search methods. For
more complex neural architecture search spaces, Vertex AutoML uti-
lizes Population-Based Training, which simultaneously trains multiple
models and dynamically adjusts their hyperparameters by leveraging
the performance of other models in the population, analogous to nat-
ural selection principles.

Vertex Al democratizes state-of-the-art hyperparameter search tech-
niques at the cloud scale for all ML developers, abstracting away the
underlying orchestration and execution complexity. Users focus solely
on their dataset, model requirements, and accuracy goals, while Ver-
tex manages the tuning cycle, resource allocation, model training, accu-
racy tracking, and artifact storage under the hood. The resultis getting
deployment-ready, optimized ML models faster for the target problem.

7.6.3.2 TinyML

Edge Impulse’s Efficient On-device Neural Network Tuner (EON
Tuner) is an automated hyperparameter optimization tool designed
to develop microcontroller machine learning models. It streamlines
the model development process by automatically finding the best
neural network configuration for efficient and accurate deployment
on resource-constrained devices.

The key functionality of the EON Tuner is as follows. First, develop-
ers define the model hyperparameters, such as number of layers, nodes
per layer, activation functions, and learning rate annealing schedule.
These parameters constitute the search space that will be optimized.
Next, the target microcontroller platform is selected, providing em-
bedded hardware constraints. The user can also specify optimization
objectives, such as minimizing memory footprint, lowering latency, re-
ducing power consumption, or maximizing accuracy.

With the defined search space and optimization goals, the EON
Tuner leverages Bayesian hyperparameter optimization to explore pos-
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sible configurations intelligently. Each prospective configuration is
automatically implemented as a full model specification, trained, and
evaluated for quality metrics. The continual process balances explo-
ration and exploitation to arrive at optimized settings tailored to the
developer’s chosen chip architecture and performance requirements.

The EON Tuner frees machine learning engineers from the demand-
ingly iterative process of hand-tuning models by automatically tuning
models for embedded deployment. The tool integrates seamlessly into
the Edge Impulse workflow, taking models from concept to efficiently
optimized implementations on microcontrollers. The expertise encap-
sulated in EON Tuner regarding ML model optimization for microcon-
trollers ensures beginner and experienced developers alike can rapidly
iterate to models fitting their project needs.

O Caution 13: Hyperparameter Tuning

Get ready to unlock the secrets of hyperparameter tuning and
take your PyTorch models to the next level! Hyperparameters
are like the hidden dials and knobs that control your model’s
learning superpowers. In this Colab notebook, you’ll team up
with Ray Tune to find those perfect hyperparameter combina-
tions. Learn how to define what values to search through, set
up your training code for optimization, and let Ray Tune do the
heavy lifting. By the end, you'll be a hyperparameter tuning pro!

O Open in Colab

Video 7 explains the systematic organization of the hyperparameter
tuning process.

! Important 7: Hyperparameter

https:/ /www.youtube.com/watch?v=AXDByU3D1hA&list=
PLkDaE6sCZn6Hn0vK8c082zjQtt3T2Nkqc&index=24

7.7 Regularization

Regularization is a critical technique for improving the performance
and generalizability of machine learning models in applied settings. It
refers to mathematically constraining or penalizing model complexity
to avoid overfitting the training data. Without regularization, complex
ML models are prone to overfitting the dataset and memorizing pecu-


https://colab.research.google.com/github/pytorch/tutorials/blob/gh-pages/_downloads/30bcc2970bf630097b13789b5cdcea48/hyperparameter_tuning_tutorial.ipynb
https://www.youtube.com/watch?v=AXDByU3D1hA&list=PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqc&index=24
https://www.youtube.com/watch?v=AXDByU3D1hA&list=PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqc&index=24
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liarities and noise in the training set rather than learning meaningful
patterns. They may achieve high training accuracy but perform poorly
when evaluating new unseen inputs.

Regularization helps address this problem by placing constraints
that favor simpler, more generalizable models that don't latch onto
sampling errors. Techniques like L1/L2 regularization directly penal-
ize large parameter values during training, forcing the model to use
the smallest parameters that can adequately explain the signal. Early
stopping rules halt training when validation set performance stops im-
proving - before the model starts overfitting.

Appropriate regularization is crucial when deploying models to new
user populations and environments where distribution shifts are likely.
For example, an irregularized fraud detection model trained at a bank
may work initially but accrue technical debt over time as new fraud
patterns emerge.

Regularizing complex neural networks also offers computational
advantages—smaller models require less data augmentation, compute
power, and data storage. Regularization also allows for more efficient
Al systems, where accuracy, robustness, and resource management
are thoughtfully balanced against training set limitations.

Several powerful regularization techniques are commonly used to
improve model generalization. Architecting the optimal strategy re-
quires understanding how each method affects model learning and
complexity.

7.71 L1and L2

Two of the most widely used regularization forms are L1 and L2 reg-
ularization. Both penalize model complexity by adding an extra term
to the cost function optimized during training. This term grows larger
as model parameters increase.

L2 regularization, also known as ridge regression, adds the sum of
squared magnitudes of all parameters multiplied by a coefficient «.
This quadratic penalty curtails extreme parameter values more aggres-
sively than L1 techniques. Implementation requires only changing the
cost function and tuning o.

Rp»(0)=a Z 07
i=1
Where:

* R;5(0O) - The L2 regularization term that is added to the cost
function
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o - The L2 regularization hyperparameter that controls the
strength of regularization

6; - The ith model parameter

n - The number of parameters in the model

6? - The square of each parameter

And the full L2 regularized cost function is:

J(0) =L(0) + R1»(O)
Where:

* L(0) - The original unregularized cost function
® J(0) - The new regularized cost function

Both L1 and L2 regularization penalize large weights in the neural
network. However, the key difference between L1 and L2 regulariza-
tion is that L2 regularization penalizes the squares of the parameters
rather than the absolute values. This key difference has a consider-
able impact on the resulting regularized weights. L1 regularization, or
lasso regression, utilizes the absolute sum of magnitudes rather than
the square multiplied by «. Penalizing the absolute value of weights
induces sparsity since the gradient of the errors extrapolates linearly
as the weight terms tend towards zero; this is unlike penalizing the
squared value of the weights, where the penalty reduces as the weights
tend towards 0. By inducing sparsity in the parameter vector, L1 regu-
larization automatically performs feature selection, setting the weights
of irrelevant features to zero. Unlike L2 regularization, L1 regular-
ization leads to sparsity as weights are set to 0; in L2 regularization,
weights are set to a value very close to 0 but generally never reach ex-
act 0. L1 regularization encourages sparsity and has been used in some
works to train sparse networks that may be more hardware efficient
(Hoefler et al. 2021).

R, (©)=a) |6
i=1
Where:

* R;1(©) - The L1 regularization term that is added to the cost
function

® o - The L1 regularization hyperparameter that controls the
strength of regularization

¢ 0, - The i-th model parameter
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¢ 7 - The number of parameters in the model
* ||0,|| - The L1 norm, which takes the absolute value of each pa-
rameter

And the full L1 regularized cost function is:

J(0) = L(0)+ R..(O)
Where:

® L(0) - The original unregularized cost function
* J(0) - The new regularized cost function

The choice between L1 and L2 depends on the expected model com-
plexity and whether intrinsic feature selection is needed. Both require
iterative tuning across a validation set to select the optimal « hyperpa-
rameter.

Video 8 and Video 9 explains how regularization works.

! Important 8: Regularization

https:/ /www.youtube.com/watch?v=6g0t3Phly2M&list=
PLkDaE6sCZn6Hn0vK8c082zjQtt3T2Nkqc&index=4

Video 9 explains how regularization can help reduce model overfit-
ting to improve performance.

! Important 9: Why Regularization Reduces Overfitting

https:/ /www.youtube.com/watch?v=NyG-7nRpsW8&list=
PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqc&index=5

7.7.2 Dropout

Another widely adopted regularization method is dropout (Srivastava
et al. 2014). During training, dropout randomly sets a fraction p of
node outputs or hidden activations to zero. This encourages greater
information distribution across more nodes rather than reliance on a
small number of nodes. Come prediction time; the full neural network
is used, with intermediate activations scaled by 1 — p to maintain out-
put magnitudes. GPU optimizations make implementing dropout effi-
ciently straightforward via frameworks like PyTorch and TensorFlow.


https://www.youtube.com/watch?v=6g0t3Phly2M&list=PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqc&index=4
https://www.youtube.com/watch?v=6g0t3Phly2M&list=PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqc&index=4
https://www.youtube.com/watch?v=NyG-7nRpsW8&list=PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqc&index=5
https://www.youtube.com/watch?v=NyG-7nRpsW8&list=PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqc&index=5
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Let’s be more pedantic. During training with dropout, each node’s
output a, is passed through a dropout mask r, before being used by
the next layer:

i=Tri0a;

Where:

* q, - output of node %

e , - output of node 7 after dropout

¢ r, - independent Bernoulli random variable with probability 1 —
p of being 1

* O - elementwise multiplication

To understand how dropout works, it’s important to know that the
dropout mask r; is based on Bernoulli random variables. A Bernoulli
random variable takes a value of 1 with probability 1 —p (keeping the
activation) and a value of 0 with probability p (dropping the activation).
This means that each node’s activation is independently either kept
or dropped during training. This dropout mask r; randomly sets a
fraction p of activations to 0 during training, forcing the network to
make redundant representations.

At test time, the dropout mask is removed, and the activations are
rescaled by 1 — p to maintain expected output magnitudes:

;‘fest — (

a 1—p)a;

Where:
test

* ¢,°*" - node output at test time
* p - the probability of dropping a node.

The key hyperparameter is p, the probability of dropping each
node,, often set between 0.2 and 0.5. Larger networks tend to benefit
from more dropout, while small networks risk underfitting if too
many nodes are cut out. Trial and error combined with monitoring
validation performance helps tune the dropout level.

Video 10 discusses the intuition behind the dropout regularization
technique and how it works.

! Important 10: Dropout

https:/ /www.youtube.com/watch?v=ARq74QuavAo&list=
PLkDaE6sCZn6Hn0vK8c082zjQtt3T2Nkqc&index=7



https://www.youtube.com/watch?v=ARq74QuavAo&list=PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqc&index=7
https://www.youtube.com/watch?v=ARq74QuavAo&list=PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqc&index=7
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7.7.3 Early Stopping

The intuition behind early stopping involves tracking model perfor-
mance on a held-out validation set across training epochs. At first, in-
creases in training set fitness accompany gains in validation accuracy
as the model picks up generalizable patterns. After some point, how-
ever, the model starts overfitting - latching onto peculiarities and noise
in the training data that don’t apply more broadly. The validation per-
formance peaks and then degrades if training continues. Early stop-
ping rules halt training at this peak to prevent overfitting. This tech-
nique demonstrates how ML pipelines must monitor system feedback,
not just unquestioningly maximize performance on a static training set.
The system’s state evolves, and the optimal endpoints change.

Therefore, formal early stopping methods require monitoring a met-
ric like validation accuracy or loss after each epoch. Common curves
exhibit rapid initial gains that taper off, eventually plateauing and de-
creasing slightly as overfitting occurs. The optimal stopping point is
often between 5 and 15 epochs past the peak, depending on patient
thresholds. Tracking multiple metrics can improve signal since vari-
ance exists between measures.

Simple, early-stopping rules stop immediately at the first post-peak
degradation. More robust methods introduce a patience parameter—
the number of degrading epochs permitted before stopping. This
avoids prematurely halting training due to transient fluctuations.
Typical patience windows range from 50 to 200 validation batches.
Wider windows incur the risk of overfitting. Formal tuning strategies
can determine optimal patience.

O Caution 14: Regularization

Battling Overfitting: Unlock the Secrets of Regularization! Over-
fitting is like your model memorizing the answers to a practice
test, then failing the real exam. Regularization techniques are
the study guides that help your model generalize and ace new
challenges. In this Colab notebook, you’ll learn how to tune reg-
ularization parameters for optimal results using L1 & L2 regular-
ization, dropout, and early stopping.

€O Open in Colab

Video 11 covers a few other regularization methods that can reduce
model overfitting.


https://colab.research.google.com/github/dphi-official/Deep_Learning_Bootcamp/blob/master/Optimization_Techniques/Regularization_and_Dropout.ipynb
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1 Important 11: Other Regularization Methods

https:/ /www.youtube.com/watch?v=BOCLq2gpcGU&list=
PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqc&index=8

7.8 Activation Functions

Activation functions play a crucial role in neural networks. They intro-
duce nonlinear behaviors that allow neural nets to model complex pat-
terns. Element-wise activation functions are applied to the weighted
sums coming into each neuron in the network. Without activation func-
tions, neural nets would be reduced to linear regression models.
Ideally, activation functions possess certain desirable qualities:

¢ Nonlinear: They enable modeling complex relationships
through nonlinear transformations of the input sum.

¢ Differentiable: They must have well-defined first derivatives
to enable backpropagation and gradient-based optimization
during training.

* Range-bounding: They constrain the output signal, preventing
an explosion. For example, sigmoid squashes inputs to (0,1).

Additionally, properties like computational efficiency, monotonicity,
and smoothness make some activations better suited over others based
on network architecture and problem complexity.

We will briefly survey some of the most widely adopted activation
functions and their strengths and limitations. We will also provide
guidelines for selecting appropriate functions matched to ML system
constraints and use case needs.

7.8.1 Sigmoid

The sigmoid activation applies a squashing S-shaped curve tightly
binding the output between 0 and 1. It has the mathematical form:

1
sigmoid(x) =
g (z) =1 =
The exponentiation transform allows the function to smoothly transi-
tion from near 0 towards near 1 as the input moves from very negative
to very positive. The monotonic rise covers the full (0,1) range.


https://www.youtube.com/watch?v=BOCLq2gpcGU&list=PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqc&index=8
https://www.youtube.com/watch?v=BOCLq2gpcGU&list=PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqc&index=8
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The sigmoid function has several advantages. It always provides a
smooth gradient for backpropagation, and its output is bounded be-
tween 0 and 1, which helps prevent “exploding” values during train-
ing. Additionally, it has a simple mathematical formula that is easy to
compute.

However, the sigmoid function also has some drawbacks. It tends
to saturate at extreme input values, which can cause gradients to “van-
ish,” slowing down or even stopping the learning process. Further-
more, the function is not zero-centered, meaning that its outputs are
not symmetrically distributed around zero, which can lead to ineffi-
cient updates during training.

7.8.2 Tanh

Tanh or hyperbolic tangent also assumes an S-shape but is zero-
centered, meaning the average output value is 0.

et —e *

The numerator/denominator transform shifts the range from (0,1)
in Sigmoid to (-1, 1) in tanh.

Most pros/cons are shared with Sigmoid, but Tanh avoids some out-
put saturation issues by being centered. However, it still suffers from
vanishing gradients with many layers.

7.8.3 ReLU

The Rectified Linear Unit (ReLU) introduces a simple thresholding be-
havior with its mathematical form:

ReLU(z) =max(0,x)

It leaves all positive inputs unchanged while clipping all negative
values to 0. This sparse activation and cheap computation make ReLU
widely favored over sigmoid/tanh.

Figure 7.7 demonstrates the 3 activation functions we discussed
above in comparison to a linear function:

7.8.4 Softmax

The softmax activation function is generally used as the last layer for
classification tasks to normalize the activation value vector so that its
elements sum to 1. This is useful for classification tasks where we want
to learn to predict class-specific probabilities of a particular input, in
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Tanh RelLU

tanh(z) %
X
X

Sigmoid Linear
o(z) = ,”',_. “

X

max(0,x)

which case the cumulative probability across classes is equal to 1. The
softmax activation function is defined as

7.8.5 Pros and Cons

Table 7.4 are the summarizing pros and cons of these various standard
activation functions:

Table 7.4: Comparing the pros and cons of different optimization algo-

rithms.
Activation  Pros Cons
Sigmoid ¢ Smooth gradient for ¢ Saturation
backdrop kills gradients
¢ Output bounded between * Not
Oand 1 zero-centered
Tanh ¢ Smoother gradient than o Still suffers
sigmoid vanishing
¢ Zero-centered output [-1, gradient issue
1]
ReLU ¢ Computationally efficient * “Dying ReLU”

units
¢ Not bounded

¢ Introduces sparsity
* Avoids vanishing
gradients

Figure 7.7: Common activation
functions. Source: Al Wiki.


https://machine-learning.paperspace.com/wiki/activation-function
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Activation  Pros Cons

Softmax e Used for the last layer to
normalize outputs to be a
distribution

¢ Typically used for
classification tasks

O Caution 15: Activation Functions

Unlock the power of activation functions! These little mathemati-
cal workhorses are what make neural networks so incredibly flex-
ible. In this Colab notebook, you'll go hands-on with functions
like the Sigmoid, tanh, and the superstar ReLU. See how they
transform inputs and learn which works best in different situa-
tions. It’s the key to building neural networks that can tackle
complex problems!

CO Open in Colab

7.9 Weight Initialization

Proper initialization of the weights in a neural network before train-
ing is a vital step directly impacting model performance. Randomly
initializing weights to very large or small values can lead to problems
like vanishing/exploding gradients, slow convergence of training, or
getting trapped in poor local minima. Proper weight initialization ac-
celerates model convergence during training and carries implications
for system performance at inference time in production environments.
Some key aspects include:

¢ Faster Time-to-Accuracy: Carefully tuned initialization leads to
faster convergence, which results in models reaching target accu-
racy milestones earlier in the training cycle. For instance, Xavier
initialization could reduce time-to-accuracy by 20% versus bad
random initialization. As training is typically the most time- and
compute-intensive phase, this directly enhances ML system ve-
locity and productivity.

* Model Iteration Cycle Efficiency: If models train faster, the over-
all turnaround time for experimentation, evaluation, and model
design iterations decreases significantly. Systems have more flex-
ibility to explore architectures, data pipelines, etc, within given
timeframes.


https://colab.research.google.com/github/jfogarty/machine-learning-intro-workshop/blob/master/notebooks/nn_activation_functions.ipynb
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¢ Impact on Necessary Training Epochs: The training process
runs for multiple epochs - with each full pass through the
data being an epoch. Good Initialization can reduce the epochs
required to converge the loss and accuracy curves on the training
set by 10-30%. This means tangible resource and infrastructure
cost savings.

¢ Effect on Training Hyperparameters: Weight initialization
parameters interact strongly with certain regularization hyper-
parameters that govern the training dynamics, like learning
rate schedules and dropout probabilities. Finding the right
combination of settings is non-trivial. Appropriate Initialization
smoothens this search.

Weight initialization has cascading benefits for machine learning en-
gineering efficiency and minimized system resource overhead. It is
an easily overlooked tactic that every practitioner should master. The
choice of which weight initialization technique to use depends on fac-
tors like model architecture (number of layers, connectivity pattern,
etc.), activation functions, and the specific problem being solved. Over
the years, researchers have developed and empirically verified differ-
ent initialization strategies targeted to common neural network archi-
tectures, which we will discuss here.

7.9.1 Uniform and Normal Initialization

When randomly initializing weights, two standard probability distri-
butions are commonly used - uniform and Gaussian (normal). The
uniform distribution sets an equal probability of the initial weight pa-
rameters falling anywhere within set minimum and maximum bounds.
For example, the bounds could be -1 and 1, leading to a uniform spread
of weights between these limits. The Gaussian distribution, on the
other hand, concentrates probability around a mean value, following
the shape of a bell curve. Most weight values will cluster in the re-
gion of the specified mean, with fewer samples towards the extreme
ends. The standard deviation parameter controls the spread around
the mean.

The choice between uniform or normal initialization depends on the
network architecture and activation functions. For shallow networks,
a normal distribution with a relatively small standard deviation (e.g.,
0.01) is recommended. The bell curve prevents large weight values
that could trigger training instability in small networks. For deeper net-
works, a normal distribution with higher standard deviation (say 0.5 or
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above) or uniform distribution may be preferred to account for vanish-
ing gradient issues over many layers. The larger spread drives greater
differentiation between neuron behaviors. Fine-tuning the initializa-
tion distribution parameters is crucial for stable and speedy model
convergence. Monitoring training loss trends can diagnose issues for
tweaking the parameters iteratively.

7.9.2 Xavier Initialization

Proposed by Glorot and Bengio (2010), this initialization technique is
specially designed for sigmoid and tanh activation functions. These
saturated activations can cause vanishing or exploding gradients dur-
ing backpropagation over many layers.

The Xavier method cleverly sets the variance of the weight distribu-
tion based on the number of inputs and outputs to each layer. The
intuition is that this balances the flow of information and gradients
throughout the network. For example, consider a layer with 300 input
units and 100 output units. Plugging this into the formula variance =
2/(#inputs + #outputs) gives a variance of 2/(300+100) = 0.01.

Sampling the initial weights from a uniform or normal distribution
centered at 0 with this variance provides much smoother training con-
vergence for deep sigmoid/tanh networks. The gradients are well-
conditioned, preventing exponential vanishing or growth.

7.9.3 He Initialization

As proposed by K. He et al. (2015), this initialization technique is tai-
lored to ReLU (Rectified Linear Unit) activation functions. ReLUs in-
troduce the dying neuron problem where units get stuck outputting
all Os if they receive strong negative inputs initially. This slows and
hinders training.

He overcomes this by sampling weights from a distribution with a
variance set based only on the number of inputs per layer, disregarding
the outputs. This keeps the incoming signals small enough to activate
the ReLUs into their linear regime from the beginning, avoiding dead
units. For a layer with 1024 inputs, the formula variance = 2/1024 =
0.002 keeps most weights concentrated closely around 0.

This specialized Initialization allows ReLU networks to converge ef-
ficiently right from the start. The choice between Xavier and He must
match the intended network activation function.
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O Caution 16: Weight Initialization

Get your neural network off to a strong start with weight initial-
ization! How you set those initial weights can make or break
your model’s training. Think of it like tuning the instruments in
an orchestra before the concert. In this Colab notebook, you'll
learn that the right initialization strategy can save time, improve
model performance, and make your deep-learning journey much
smoother.

CO Open in Colab

Video 12 emphasizes the importance of deliberately selecting initial
weight values over random choices.

! Important 12: Weight Initialization

https:/ /www.youtube.com/watch?v=s2coXdufOzE&list=
PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqgc&index=11

7.10 System Bottlenecks

As introduced earlier, neural networks comprise linear operations (ma-
trix multiplications) interleaved with element-wise nonlinear activa-
tion functions. The most computationally expensive portion of neural
networks is the linear transformations, specifically the matrix multi-
plications between each layer. These linear layers map the activations
from the previous layer to a higher dimensional space that serves as
inputs to the next layer’s activation function.

7.10.1 Runtime Complexity of Matrix Multiplication

7.10.1.1 Layer Multiplications vs. Activations

The bulk of computation in neural networks arises from the matrix
multiplications between layers. Consider a neural network layer with
an input dimension of M = 500 and output dimension of N = 1000;
the matrix multiplication requires O(N - M) = O(1000-500) = 500, 000
multiply-accumulate (MAC) operations between those layers.
Contrast this with the preceding layer, which had M = 300 inputs,
requiring O(500-300) = 150,000 ops. As the dimensions of the lay-
ers increase, the computational requirements scale quadratically with


https://colab.research.google.com/github/csaybar/DLcoursera/blob/master/Improving%20Deep%20Neural%20Networks%20Hyperparameter%20tuning%2C%20Regularization%20and%20Optimization/week5/Initialization/Initialization.ipynb
https://www.youtube.com/watch?v=s2coXdufOzE&list=PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqc&index=11
https://www.youtube.com/watch?v=s2coXdufOzE&list=PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqc&index=11
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the size of the layer dimensions. The total computations across L lay-

ers can be expressed as Zl]—:ll O(NW . M(=1)), where the computation
required for each layer is dependent on the product of the input and
output dimensions of the matrices being multiplied.

Now, comparing the matrix multiplication to the activation function,
which requires only O(/V) = 1000 element-wise nonlinearities for N =
1000 outputs, we can see the linear transformations dominating the
activations computationally.

These large matrix multiplications impact hardware choices,
inference latency, and power constraints for real-world neural net-
work applications. For example, a typical DNN layer may require
500,000 multiply-accumulates vs. only 1000 nonlinear activations,
demonstrating a 500x increase in mathematical operations.

When training neural networks, we typically use mini-batch gradi-
ent descent, operating on small batches of data simultaneously. Con-
sidering a batch size of B training examples, the input to the matrix
multiplication becomes a M x B matrix, while the outputisan N x B
matrix.

7.10.1.2 Mini-batch

In training neural networks, we need to repeatedly estimate the gra-
dient of the loss function with respect to the network parameters (i.e.,
weights, and biases). This gradient indicates which direction the pa-
rameters should be updated in to minimize the loss. As introduced
previously, we perform updates over a batch of data points every up-
date, also known as stochastic gradient descent or mini-batch gradient
descent.

The most straightforward approach is to estimate the gradient based
on a single training example, compute the parameter update, lather,
rinse, and repeat for the next example. However, this involves very
small and frequent parameter updates that can be computationally in-
efficient and may need to be more accurate in terms of convergence
due to the stochasticity of using just a single data point for a model
update.

Instead, mini-batch gradient descent balances convergence stability
and computational efficiency. Rather than computing the gradient
on single examples, we estimate the gradient based on small “mini-
batches” of data—usually between 8 and 256 examples in practice.

This provides a noisy but consistent gradient estimate that leads to
more stable convergence. Additionally, the parameter update must
only be performed once per mini-batch rather than once per example,
reducing computational overhead.
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By tuning the mini-batch size, we can control the tradeoff between
the smoothness of the estimate (larger batches are generally better)
and the frequency of updates (smaller batches allow more frequent up-
dates). Mini-batch sizes are usually powers of 2, so they can efficiently
leverage parallelism across GPU cores.

So, the total computation performs an N x M by M x B matrix mul-
tiplication, yielding O(N - M - B) floating point operations. As a nu-
merical example, N = 1000 hidden units, M = 500 input units, and
a batch size B = 64 equates to 1000 x 500 x 64 = 32 million multiply-
accumulates per training iteration!

In contrast, the activation functions are applied element-wise to the
N x B output matrix, requiring only O(N - B) computations. For N =
1000 and B = 64, that is just 64,000 nonlinearities - 500X less work than
the matrix multiplication.

As we increase the batch size to fully leverage parallel hardware like
GPUs, the discrepancy between matrix multiplication and activation
function cost grows even larger. This reveals how optimizing the linear
algebra operations offers tremendous efficiency gains.

Therefore, matrix multiplication is central in analyzing where and
how neural networks spend computation. For example, matrix multi-
plications often account for over 90% of inference latency and training
time in common convolutional and recurrent neural networks.

7.10.1.3 Optimizing Matrix Multiplication

Several techniques improve the efficiency of general dense/sparse
matrix-matrix and matrix-vector operations to improve overall
efficiency. Some key methods include:

® Leveraging optimized math libraries like cuBLAS for GPU accel-
eration

¢ Enabling lower precision formats like FP16 or INT8 where accu-
racy permits

¢ Employing Tensor Processing Units with hardware matrix multi-
plication

® Sparsity-aware computations and data storage formats to exploit
zero parameters

¢ Approximating matrix multiplications with algorithms like Fast
Fourier Transforms

* Model architecture design to reduce layer widths and activations

* Quantization, pruning, distillation, and other compression tech-
niques

¢ Parallelization of computation across available hardware


https://developer.nvidia.com/cublas
https://en.wikipedia.org/wiki/Tensor_Processing_Unit
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¢ Caching/pre-computing results where possible to reduce redun-
dant operations

The potential optimization techniques are vast, given the outsized
portion of time models spend in matrix and vector math. Even in-
cremental improvements speed up runtimes and lower energy usage.
Finding new ways to improve these linear algebra primitives remains
an active area of research aligned with the future demands of machine
learning. We will discuss these in detail in the Optimizations and Al
Acceleration chapters.

7.10.2 Compute vs. Memory Bottleneck

At this point, matrix-matrix multiplication is the core mathematical op-
eration underpinning neural networks. Both training and inference for
neural networks heavily use these matrix multiply operations. Analy-
sis shows that over 90% of computational requirements in state-of-the-
art neural networks arise from matrix multiplications. Consequently,
the performance of matrix multiplication has an enormous influence
on overall model training or inference time.

7.10.2.1 Training versus Inference

While training and inference rely heavily on matrix multiplication per-
formance, their precise computational profiles differ. Specifically, neu-
ral network inference tends to be more compute-bound than training
for an equivalent batch size. The key difference lies in the backpropa-
gation pass, which is only required during training. Backpropagation
involves a sequence of matrix multiply operations to calculate gradi-
ents with respect to activations across each network layer. Critically,
though, no additional memory bandwidth is needed here—the inputs,
outputs, and gradients are read /written from cache or registers.

As a result, training exhibits lower arithmetic intensities, with
gradient calculations bounded by memory access instead of FLOPs
(Floating Point Operations Per Second), a measure of computational
performance that indicates how many floating-point calculations a
system can perform per second. In contrast, the forward propagation
dominates neural network inference, which corresponds to a series
of matrix-matrix multiplies. With no memory-intensive gradient
retrospecting, larger batch sizes readily push inference into being
extremely compute-bound. The high measured arithmetic intensities
exhibit this. Response times may be critical for some inference appli-
cations, forcing the application provider to use a smaller batch size to


../optimizations/optimizations.qmd
../hw_acceleration/hw_acceleration.qmd
../hw_acceleration/hw_acceleration.qmd
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meet these response-time requirements, thereby reducing hardware
efficiency; hence, inferences may see lower hardware utilization.

The implications are that hardware provisioning and bandwidth
vs. FLOP tradeoffs differ depending on whether a system targets train-
ing or inference. High-throughput, low-latency servers for inference
should emphasize computational power instead of memory, while
training clusters require a more balanced architecture.

However, matrix multiplication exhibits an interesting tension - the
underlying hardware’s memory bandwidth or arithmetic throughput
capabilities can bind it. The system’s ability to fetch and supply matrix
data versus its ability to perform computational operations determines
this direction.

This phenomenon has profound impacts; hardware must be de-
signed judiciously, and software optimizations must be considered.
Optimizing and balancing compute versus memory to alleviate this
underlying matrix multiplication bottleneck is crucial for efficient
model training and deployment.

Finally, batch size may impact convergence rates during neural net-
work training, another important consideration. For example, there
are generally diminishing returns in benefits to convergence with ex-
tremely large batch sizes (i.e.,> 16384). In contrast, extremely large
batch sizes may be increasingly beneficial from a hardware/arithmetic
intensity perspective; using such large batches may not translate to
faster convergence vs wall-clock time due to their diminishing bene-
fits to convergence. These tradeoffs are part of the design decisions
core to systems for the machine-learning type of research.

7.10.2.2 Batch Size

The batch size used during neural network training and inference sig-
nificantly impacts whether matrix multiplication poses more of a com-
putational or memory bottleneck. Concretely, the batch size refers to
the number of samples propagated through the network together in
one forward/backward pass. Matrix multiplication equates to larger
matrix sizes.

Specifically, let’s look at the arithmetic intensity of matrix multiplica-
tion during neural network training. This measures the ratio between
computational operations and memory transfers. The matrix multi-
ply of two matrices of size N x M and M x B requires N x M x B
multiply-accumulate operations, but only transfers of N x M + M x B
matrix elements.

As we increase the batch size B, the number of arithmetic operations
grows faster than the memory transfers. For example, with a batch
size of 1, we need N x M operations and N + M transfers, giving an
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NxM
N+M:
of 128, the intensity ratio becomes A < e ~ 128.

Using a larger batch size shifts the overall computation from
memory-bounded to more compute-bounded. Al training uses large
batch sizes and is generally limited by peak arithmetic computational
performance, ie., Application 3 in Figure 7.8. Therefore, batched
matrix multiplication is far more computationally intensive than
memory access bound. This has implications for hardware design
and software optimizations, which we will cover next. The key
insight is that we can significantly alter the computational profile and
bottlenecks posed by neural network training and inference by tuning

the batch size.

arithmetic intensity ratio of around But with a large batch size
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7.10.2.3 Hardware Characteristics

Modern hardware like CPUs and GPUs is highly optimized for com-
putational throughput rather than memory bandwidth. For example,
high-end H100 Tensor Core GPUs can deliver over 60 TFLOPS of
double-precision performance but only provide up to 3 TB/s of mem-
ory bandwidth. This means there is almost a 20x imbalance between
arithmetic units and memory access; consequently, for hardware like
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GPU accelerators, neural network training workloads must be made
as computationally intensive as possible to use the available resources
fully.

This further motivates the need for using large batch sizes dur-
ing training. When using a small batch, the matrix multiplication
is bounded by memory bandwidth, underutilizing the abundant
compute resources. However, we can shift the bottleneck towards
computation and attain much higher arithmetic intensity with suffi-
ciently large batches. For instance, batches of 256 or 512 samples may
be needed to saturate a high-end GPU. The downside is that larger
batches provide less frequent parameter updates, which can impact
convergence. Still, the parameter serves as an important tuning knob
to balance memory vs compute limitations.

Therefore, given the imbalanced compute-memory architectures of
modern hardware, employing large batch sizes is essential to alleviate
bottlenecks and maximize throughput. As mentioned, the subsequent
software and algorithms also need to accommodate such batch sizes
since larger batch sizes may have diminishing returns toward the net-
work’s convergence. Using very small batch sizes may lead to subopti-
mal hardware utilization, ultimately limiting training efficiency. Scal-
ing up to large batch sizes is a research topic explored in various works
that aim to do large-scale training (Y. You et al. 2017).

7.10.2.4 Model Architectures

The underlying neural network architecture also affects whether
matrix multiplication poses more of a computational or memory
bottleneck during execution. Transformers and MLPs are much more
compute-bound than CNN convolutional neural networks. This stems
from the types of matrix multiplication operations involved in each
model. Transformers rely on self-attention, multiplying large activa-
tion matrices by massive parameter matrices to relate elements. MLPs
stack fully connected layers, also requiring large matrix multiplies.

In contrast, the convolutional layers in CNNs have a sliding window
that reuses activations and parameters across the input, which means
fewer unique matrix operations are needed. However, the convolu-
tions require repeatedly accessing small input parts and moving par-
tial sums to populate each window. Even though the arithmetic oper-
ations in convolutions are intense, this data movement and buffer ma-
nipulation impose huge memory access overheads. CNNs comprise
several layered stages, so intermediate outputs must frequently mate-
rialize in memory.

As a result, CNN training tends to be more memory bandwidth
bound relative to arithmetic bound compared to Transformers and
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MLPs. Therefore, the matrix multiplication profile, and in turn,
the bottleneck posed, varies significantly based on model choice.
Hardware and systems need to be designed with appropriate
compute-memory bandwidth balance depending on target model
deployment. Models relying more on attention and MLP layers
require higher arithmetic throughput compared to CNNs, which
necessitates high memory bandwidth.

7.11 Training Parallelization

Training neural networks entails intensive computational and
memory demands. The backpropagation algorithm for calculating
gradients and updating weights consists of repeated matrix mul-
tiplications and arithmetic operations over the entire dataset. For
example, one pass of backpropagation scales in time complexity with
O(num_parameters X batch_size x sequence_length).

The computational requirements grow rapidly as model size in-
creases in parameters and layers. Moreover, the algorithm requires
storing activation outputs and model parameters for the backward
pass, which grows with model size.

Larger models cannot fit and train on a single accelerator device
like a GPU, and the memory footprint becomes prohibitive. There-
fore, we need to parallelize model training across multiple devices to
provide sufficient compute and memory to train state-of-the-art neural
networks.

As shown in Figure 7.9, the two main approaches are data par-
allelism, which replicates the model across devices while splitting
the input data batch-wise, and model parallelism, which partitions
the model architecture itself across different devices. By training in
parallel, we can leverage greater aggregate compute and memory
resources to overcome system limitations and accelerate deep learning
workloads.

7.11.1 Data Parallel

Data parallelization is a common approach to parallelize machine
learning training across multiple processing units, such as GPUs or
distributed computing resources. The training dataset is divided into
batches in data parallelism, and a separate processing unit processes
each batch. The model parameters are then updated based on the
gradients computed from the processing of each batch. Here’s a
step-by-step description of data parallelization for ML training:
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Model Parallelism Data Parallelism

Figure 7.9: Data parallelism
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1. Dividing the Dataset: The training dataset is divided into
smaller batches, each containing a subset of the training
examples.

2. Replicating the Model: The neural network model is replicated
across all processing units, and each processing unit has its copy
of the model.

3. Parallel Computation: Each processing unit takes a different
batch and independently computes the forward and backward
passes. During the forward pass, the model makes predictions
on the input data. The loss function determines gradients for
the model parameters during the backward pass.

4. Gradient Aggregation: After processing their respective batches,
the gradients from each processing unit are aggregated. Com-
mon aggregation methods include summation or averaging of
the gradients.

5. Parameter Update: The aggregated gradients update the model
parameters. The update can be performed using optimization
algorithms like SGD or variants like Adam.

6. Synchronization: After the update, all processing units synchro-
nize their model parameters, ensuring that each has the latest
version of the model.

The prior steps are repeated for several iterations or until conver-
gence.

Let’s take a specific example. We have 256 batch sizes and 8 GPUs;
each GPU will get a micro-batch of 32 samples. Their forward and back-
ward passes compute losses and gradients only based on the local 32
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samples. The gradients get aggregated across devices with a parame-
ter server or collective communications library to get the effective gra-
dient for the global batch. Weight updates happen independently on
each GPU according to these gradients. After a configured number of
iterations, updated weights synchronize and equalize across devices
before continuing to the next iterations.

Data parallelism is effective when the model is large, and the dataset
is substantial, as it allows for parallel processing of different parts of
the data. It is widely used in deep learning frameworks and libraries
that support distributed training, such as TensorFlow and PyTorch.
However, to ensure efficient parallelization, care must be taken to han-
dle issues like communication overhead, load balancing, and synchro-
nization.

7.11.2 Model Parallelism

Model parallelism refers to distributing the neural network model
across multiple devices rather than replicating the full model like
data parallelism. This is particularly useful when a model is too large
to fit into the memory of a single GPU or accelerator device. While
this might not be specifically applicable for embedded or TinyML use
cases as most models are relatively small(er), it is still useful to know.

In model parallel training, different parts or layers of the model are
assigned to separate devices. The input activations and intermediate
outputs get partitioned and passed between these devices during the
forward and backward passes to coordinate gradient computations
across model partitions.

The memory footprint and computational operations are distributed
by splitting the model architecture across multiple devices instead of
concentrating on one. This enables training very large models with
billions of parameters that otherwise exceed the capacity of a single
device. There are several main ways in which we can do partitioning:

* Layer-wise parallelism: Consecutive layers are distributed onto
different devices. For example, device 1 contains layers 1-3; de-
vice 2 contains layers 4-6. The output activations from layer 3
would be transferred to device 2 to start the next layers for the
forward pass computations.

¢ Filter-wise parallelism: In convolutional layers, output filters
can be split among devices. Each device computes activation out-
puts for a subset of filters, which get concatenated before propa-
gating further.
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e Spatial parallelism: The input images get divided spatially, so
each device processes over a certain region like the top-left quar-
ter of images. The output regions then combine to form the full
output.

Additionally, hybrid combinations can split the model layer-wise
and data batch-wise. The appropriate type of model parallelism
depends on the specific neural architecture constraints and hardware
setup. Optimizing the partitioning and communication for the model
topology is key to minimizing overhead.

However, as the model parts run on physically separate devices,
they must communicate and synchronize their parameters during
each training step. The backward pass must ensure gradient updates
propagate accurately across the model partitions. Hence, coordi-
nation and high-speed interconnecting between devices are crucial
for optimizing the performance of model parallel training. Careful
partitioning and communication protocols are required to minimize
transfer overhead.

7.11.3 Comparison

To summarize, Table 7.5 demonstrates some of the key characteristics
for comparing data parallelism and model parallelism.

Table 7.5: Comparing data parallelism and model parallelism.

Characteristic Data Parallelism Model Parallelism

Definition Distribute data across Distribute model
devices with replicas across devices

Objective Accelerate training through  Enable larger model
compute scaling training

Scaling Scale devices/workers Scale model size

Method

Main Model size per device Device coordination

Constraint overhead

Hardware Multiple GPU/TPUs Often specialized

Require- interconnect

ments

Primary Parameter synchronization = Complex partitioning

Challenge and communication

Types N/A Layer-wise, filter-wise,

spatial
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Characteristic Data Parallelism Model Parallelism
Code Minimal changes More significant
Complexity model surgery
Popular Horovod, PyTorch Mesh TensorFlow
Libraries Distributed

7.12 Conclusion

In this chapter, we have covered the core foundations that enable
effective training of artificial intelligence models. We explored the
mathematical concepts like loss functions, backpropagation, and
gradient descent that make neural network optimization possible.
We also discussed practical techniques around leveraging training
data, regularization, hyperparameter tuning, weight initialization,
and distributed parallelization strategies that improve convergence,
generalization, and scalability.

These methodologies form the bedrock through which the success
of deep learning has been attained over the past decade. Mastering
these fundamentals equips practitioners to architect systems and
refine models tailored to their problem context. However, as models
and datasets grow exponentially, training systems must optimize
across metrics like time, cost, and carbon footprint. Hardware scaling
through warehouse scales enables massive computational throughput
- but optimizations around efficiency and specialization will be key.
Software techniques like compression and sparsity exploitation can
increase hardware gains. We will discuss several of these in the
coming chapters.

Overall, the fundamentals covered in this chapter equip practition-
ers to build, refine, and deploy models. However, interdisciplinary
skills spanning theory, systems, and hardware will differentiate ex-
perts who can lift Al to the next level sustainably and responsibly that
society requires. Understanding efficiency alongside accuracy consti-
tutes the balanced engineering approach needed to train intelligent sys-
tems that integrate smoothly across many real-world contexts.

7.13 Resources

Here is a curated list of resources to support students and instructors
in their learning and teaching journeys. We are continuously working
on expanding this collection and will be adding new exercises soon.
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i Slides

transfer.

¢ Thinking About Loss.
* Minimizing Loss.
¢ Training, Validation, and Test Data.

¢ Continuous Training:

— Retraining Trigger.

- Data Processing Overview.
— Data Ingestion.

— Data Validation.

- Data Transformation.

- Training with AutoML.

- Continuous Training Use Case Metrics.

— Continuous Training Impact on MLOps.

— Continuous Training with Transfer Learning.

These slides are a valuable tool for instructors to deliver lectures
and for students to review the material at their own pace. We
encourage students and instructors to leverage these slides to
improve their understanding and facilitate effective knowledge

! Videos
e Video 5
* Video 6
e Video 7
e Video 8
e Video 9
e Video 10
e Video 11
e Video 12



https://docs.google.com/presentation/d/1X92JqVkUY7k6yJXQcT2u83dpdrx5UzGFAJkkDMDfKe0/edit#slide=id.g94db9f9f78_0_2
https://docs.google.com/presentation/d/1x3xbZHo4VtaZgoXfueCbOGGXuWRYj0nOsKwAAoGsrD0/edit#slide=id.g94db9f9f78_0_2
https://docs.google.com/presentation/d/1G56D0-qG9YWnzQQeje9LMpcLSotMgBCiMyfj53yz7lY/edit?usp=drive_link
https://docs.google.com/presentation/d/1jtkcAnFot3VoY6dm8wARtIRPhM1Cfoe8S_8lMMox2To/edit?usp=drive_link
https://docs.google.com/presentation/d/1vW4jFv5mqpLo2_G2JXQrKLPMNoWoOvSXhFYotUbg3B0/edit?usp=drive_link
https://docs.google.com/presentation/d/1e7_JGZH2X9Ha99-UsFy0bgpC4g-Msq1zXogrbQVBKfQ/edit?usp=drive_link
https://docs.google.com/presentation/d/1PjilfceaDFp-spnZpTyqfcdvTbbfT0_95Hteqr-twk8/edit?usp=drive_link
https://docs.google.com/presentation/d/1cWMcFTl30Yl1XBYJZcND1USYKtS05TkfFkvwxfImOfY/edit?usp=drive_link
https://docs.google.com/presentation/d/1SYjvCe_LZ0S3F5MdiDvAiGflpWmffmq7vAgruyXtaHk/edit?usp=drive_link&resourcekey=0-uu6gpFHmuCx56J89oguWMQ
https://docs.google.com/presentation/d/12Hhq1WGobzsLdVUzRRD-S1Mm2Z5dINGWtbB6RBmv87c/edit?usp=drive_link
https://docs.google.com/presentation/d/1ShpXTuUsf44TW0vXuv1Mk_REeRcAIpQRO2J2EFuWP0g/edit?usp=drive_link&resourcekey=0-6wnzPJ0mFlnJnpzTMGzN3w
https://docs.google.com/presentation/d/16kQd5BBCA41gvUauznQRd1ZdW5NI6OgiJVB9cuEmk14/edit#slide=id.g94db9f9f78_0_2

7.13. Resources 232

O Exercises

To reinforce the concepts covered in this chapter, we have curated
a set of exercises that challenge students to apply their knowl-
edge and deepen their understanding.

¢ Exercise 12
¢ Exercise 13
¢ Exercise 14
¢ Exercise 16

e Exercise 15

Labs

In addition to exercises, we offer a series of hands-on labs allow-
ing students to gain practical experience with embedded Al tech-
nologies. These labs provide step-by-step guidance, enabling stu-
dents to develop their skills in a structured and supportive envi-
ronment. We are excited to announce that new labs will be avail-
able soon, further enriching the learning experience.

¢ Coming soon.
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Chapter 8

Efficient Al

Efficiency in artificial intelligence is not simply a luxury but a neces-
sity. In this chapter, we dive into the key concepts underpinning Al
systems’ efficiency. The computational demands on neural networks
can be daunting, even for minimal systems. For Al to be seamlessly in-
tegrated into everyday devices and essential systems, it must perform
optimally within the constraints of limited resources while maintain-
ing its efficacy. The pursuit of efficiency guarantees that Al models are
streamlined, rapid, and sustainable, thereby widening their applicabil-
ity across various platforms and scenarios.

Figure 8.1: DALL-E 3 Prompt:
A conceptual illustration depict-
ing efficiency in artificial intelli-
gence using a shipyard analogy.
The scene shows a bustling ship-
yard where containers represent
bits or bytes of data. These con-
tainers are being moved around
efficiently by cranes and vehicles,
symbolizing the streamlined and
rapid information processing in
Al systems.  The shipyard is
meticulously organized, illustrat-
ing the concept of optimal perfor-
mance within the constraints of
limited resources. In the back-
ground, ships are docked, repre-
senting different platforms and
scenarios where Al is applied.
The atmosphere should convey ad-
vanced technology with an under-
lying theme of sustainability and
wide applicability.
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@ Learning Objectives

* Recognize the need for efficient Al in TinyML/edge de-
vices.

¢ Understand the need for efficient model architectures like
MobileNets and SqueezeNet.

¢ Understand why techniques for model compression are im-
portant.

* Gain an appreciation for the value of efficient Al hardware.

* Recognize the importance of numerical representations
and their precision.

¢ Understand the nuances of model comparison beyond just
accuracy.

* Recognize that model comparison involves memory, com-
putation, power, and speed, not just accuracy.

* Recognize efficiency encompasses technology, costs, and
ethics.

The focus is on gaining a conceptual understanding of the motiva-
tions and significance of the various strategies for achieving efficient
Al both in terms of techniques and a holistic perspective. Subsequent
chapters provide a more in-depth exploration of these multiple con-
cepts.

8.1 Overview

Training models can consume significant energy, sometimes equiva-
lent to the carbon footprint of sizable industrial processes. We will
cover some of these sustainability details in the Al Sustainability chap-
ter. On the deployment side, if these models are not optimized for
efficiency, they can quickly drain device batteries, demand excessive
memory, or fall short of real-time processing needs. Through this chap-
ter, we aim to elucidate the nuances of efficiency, setting the ground-
work for a comprehensive exploration in the subsequent chapters.


../sustainable_ai/sustainable_ai.qmd
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8.2 The Need for Efficient Al

Efficiency takes on different connotations depending on where Al com-
putations occur. Let’s revisit Cloud, Edge, and TinyML (as discussed
in ML Systems) and differentiate between them in terms of efficiency.
Figure 8.2 provides a big-picture comparison of the three different plat-
forms.

= U L &

Cloud ML (~2006) Mobile ML (~2016) TinyML (2019)
« DNN « CNN (light) + CNN-micro
« Large Models (16-32GB) « Constrained resources: memory 8GB  * Severly Constrained resources
« X Millions of Paremeters RAM, Application size limitation « ~100KB RAM
« TFLOPs « GFLOPs * MCU with HW accelerators
« Focus on Accuracy « Focus on Accuracy-efficiency trade- « Sensors: CMOS Cameras, IR
« Hardware: GPU, TPU, FPGA off Cameras, Audio, IMU, Temp,
« AlexNet, Inception, ResNet, « Hardware: SoC, NPU Chemical, Accelerometers

VGGnet « AlexNet, Inception, ResNet, VGGnet « Data: Sensing the physical
« Data: Storage, Sharing (1%) « MobileNet_v1, ShuffleNet, world (95%)

SqueezeNet

« Data: Pics, Audio, Clicks, GPS(5%)

Cloud AI: Traditional Al models often run in large-scale data cen-
ters equipped with powerful GPUs and TPUs (Barroso, Holzle, and
Ranganathan 2019). Here, efficiency pertains to optimizing computa-
tional resources, reducing costs, and ensuring timely data processing
and return. However, relying on the cloud introduces latency, espe-
cially when dealing with large data streams that require uploading,
processing, and downloading.

Edge AI: Edge computing brings Al closer to the data source, pro-
cessing information directly on local devices like smartphones, cam-
eras, or industrial machines (E. Li et al. 2020). Here, efficiency encom-
passes quick real-time responses and reduced data transmission needs.
However, the constraints are tighter—these devices, while more pow-
erful than microcontrollers, have limited computational power com-
pared to cloud setups.

TinyML: TinyML pushes the boundaries by enabling AI models
to run on microcontrollers or extremely resource-constrained en-
vironments. The processor and memory performance difference
between TinyML and cloud or mobile systems can be several orders
of magnitude (Warden and Situnayake 2019). Efficiency in TinyML is
about ensuring models are lightweight enough to fit on these devices,
consume minimal energy (critical for battery-powered devices), and
still perform their tasks effectively.

The spectrum from Cloud to TinyML represents a shift from vast,
centralized computational resources to distributed, localized, and

Figure 8.2: Cloud, Mobile and
TinyML. Source: Schizas et al.
(2022).
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constrained environments. As we transition from one to the other,
the challenges and strategies related to efficiency evolve, underlining
the need for specialized approaches tailored to each scenario. Having
established the need for efficient Al, especially within the context of
TinyML, we will transition to exploring the methodologies devised
to meet these challenges. The following sections outline the main
concepts we will dive deeper into later. We will demonstrate the
breadth and depth of innovation needed to achieve efficient Al as we
explore these strategies.

8.3 Efficient Model Architectures

Selecting an optimal model architecture is as crucial as optimizing it.
In recent years, researchers have made significant strides in explor-
ing innovative architectures that can inherently have fewer parameters
while maintaining strong performance.

MobileNets: MobileNets are efficient mobile and embedded vision
application models (Howard et al. 2017). The key idea that led to
their success is depth-wise separable convolutions, significantly reduc-
ing the number of parameters and computations in the network. Mo-
bileNetV2 and V3 further enhance this design by introducing inverted
residuals and linear bottlenecks.

SqueezeNet: SqueezeNet is a class of ML models known for its
smaller size without sacrificing accuracy. It achieves this by using a
“fire module” that reduces the number of input channels to 3x3 filters,
thus reducing the parameters (Iandola et al. 2016). Moreover, it em-
ploys delayed downsampling to increase the accuracy by maintaining
a larger feature map.

ResNet variants: The Residual Network (ResNet) architecture al-
lows for the introduction of skip connections or shortcuts (K. He et al.
2016). Some variants of ResNet are designed to be more efficient. For
instance, ResNet-SE incorporates the “squeeze and excitation” mech-
anism to recalibrate feature maps (J. Hu, Shen, and Sun 2018), while
ResNeXt offers grouped convolutions for efficiency (S. Xie et al. 2017).

8.4 Efficient Model Compression

Model compression methods are essential for bringing deep learning
models to devices with limited resources. These techniques reduce
models’ size, energy consumption, and computational demands with-
out significantly losing accuracy. At a high level, the methods can be
categorized into the following fundamental methods:
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Pruning: We’ve mentioned pruning a few times in previous chap-
ters but have not yet formally introduced it. Pruning is similar to trim-
ming the branches of a tree. This was first thought of in the Optimal
Brain Damage paper (LeCun, Denker, and Solla 1989) and was later
popularized in the context of deep learning by Han, Mao, and Dally
(2016). Certain weights or entire neurons are removed from the net-
work in pruning based on specific criteria. This can significantly re-
duce the model size. We will explore two of the main pruning strate-
gies, structured and unstructured pruning, in Section 9.2.1. Figure 8.3
is an example of neural network pruning, where removing some of the
nodes in the inner layers (based on specific criteria) reduces the num-
ber of edges between the nodes and, in turn, the model’s size.
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Quantization: Quantization is the process of constraining an input
from a large set to output in a smaller set, primarily in deep learning;
this means reducing the number of bits that represent the weights and
biases of the model. For example, using 16-bit or 8-bit representations
instead of 32-bit can reduce the model size and speed up computations,
with a minor trade-off in accuracy. We will explore these in more de-
tail in Section 9.3.4. Figure 8.4 shows an example of quantization by
rounding to the closest number. The conversion from 32-bit floating
point to 16-bit reduces memory usage by 50%. Going from a 32-bit to
an 8-bit integer reduces memory usage by 75%. While the loss in nu-
meric precision, and consequently model performance, is minor, the
memory usage efficiency is significant.

Knowledge Distillation: Knowledge distillation involves training
a smaller model (student) to replicate the behavior of a larger model
(teacher). The idea is to transfer the knowledge from the cumbersome

Figure 8.3: Neural Network
Pruning.


https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf

Figure 8.4: Different forms of
quantization.

Figure 8.5: The tutor-student
framework for knowledge dis-
tillation. Source: Medium

8.5. Efficient Inference Hardware 238

Single-Precision 1 Half-Precision Integer
Floating Point Floating Point !
124973 [ > 12494 mE) 125
32-bit
g-bit | 01000010 | 16-bit :
) ? S 8-bit
8-bit | 11110010 | P st | 01010111 \ !
S e— mm) ([ ouor |

8it | 11111001 | L7 et [ 11001111 |

8-bit | 00101101 |

model to the lightweight one. Hence, the smaller model attains per-
formance close to its larger counterpart but with significantly fewer
parameters. Figure 8.5 demonstrates the tutor-student framework for
knowledge distillation. We will explore knowledge distillation in more
detail in the Section 9.2.2.1.

Teacher Model

Knowledge Transfer Studeat Model

1
1
1
‘Iransfer |
I
[}
1

o

I
I
|
|
|
I
I
I
|
|
|
~

8.5 Efficient Inference Hardware

In the Training chapter, we discussed the process of training Al mod-
els. Now, from an efficiency standpoint, it’s important to note that
training is a resource and time-intensive task, often requiring power-
ful hardware and taking anywhere from hours to weeks to complete.
Inference, on the other hand, needs to be as fast as possible, especially
in real-time applications. This is where efficient inference hardware
comes into play. By optimizing the hardware specifically for inference


URL:https://chukwubuikexo.medium.com/knowledge-distillation-approaches-in-machine-learning-5841a41a346a
../training/training.qmd
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tasks, we can achieve rapid response times and power-efficient oper-
ation, which is especially crucial for edge devices and embedded sys-
tems.

TPUs (Tensor Processing Units): TPUs are custom-built ASICs
(Application-Specific Integrated Circuits) by Google to accelerate
machine learning workloads (N. P. Jouppi et al. 2017a). They are
optimized for tensor operations, offering high throughput for low-
precision arithmetic, and are designed specifically for neural network
machine learning. TPUs significantly accelerate model training and
inference compared to general-purpose GPU/CPUs. This boost
means faster model training and real-time or near-real-time inference
capabilities, crucial for applications like voice search and augmented
reality.

Edge TPUs are a smaller, power-efficient version of Google’s TPUs
tailored for edge devices. They provide fast on-device ML inferencing
for TensorFlow Lite models. Edge TPUs allow for low-latency, high-
efficiency inference on edge devices like smartphones, IoT devices, and
embedded systems. Al capabilities can be deployed in real-time ap-
plications without communicating with a central server, thus saving
bandwidth and reducing latency. Consider the table in Figure 8.6. It
shows the performance differences between running different models
on CPUs versus a Coral USB accelerator. The Coral USB accelerator is
an accessory by Google’s Coral Al platform that lets developers con-
nect Edge TPUs to Linux computers. Running inference on the Edge
TPUs was 70 to 100 times faster than on CPUs.

Model Desktop CPU* | Desktop CPU* Embedded Dev Board t
architecture +USB CPU **
Accelerator with Edge TPU
(USB 3.0)
with Edge TPU
MobileNet v1 47 ms 22ms 179 ms 2.2ms
MobileNet v2 45 ms 2.3ms 150 ms 25ms
Inception v1 92 ms 3.6ms 406 ms 39ms
Inception v4 792 ms 100 ms 3,463 ms 100 ms

NN (Neural Network) Accelerators: Fixed-function neural network

Figure 8.6:  Accelerator vs
CPU performance comparison
across different hardware
configurations. Desktop CPU:
64-bit Intel(R) Xeon(R) E5-1650
v4 @ 3.60GHz. Embedded
CPU: Quad-core Cortex-A53
@ 1.5GHz, tDev Board: Quad-
core Cortex-A53 @ 1.5GHz +
Edge TPU. Source: TensorFlow
Blog.


https://cloud.google.com/tpu
https://cloud.google.com/edge-tpu
https://blog.tensorflow.org/2019/03/build-ai-that-works-offline-with-coral.html
https://blog.tensorflow.org/2019/03/build-ai-that-works-offline-with-coral.html
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accelerators are hardware accelerators designed explicitly for neural
network computations. They can be standalone chips or part of a
larger system-on-chip (SoC) solution. By optimizing the hardware
for the specific operations that neural networks require, such as
matrix multiplications and convolutions, NN accelerators can achieve
faster inference times and lower power consumption than general-
purpose CPUs and GPUs. They are especially beneficial in TinyML
devices with power or thermal constraints, such as smartwatches,
micro-drones, or robotics.

But these are all but the most common examples. Several other types
of hardware are emerging that have the potential to offer significant
advantages for inference. These include, but are not limited to, neuro-
morphic hardware, photonic computing, etc. In Section 10.3, we will
explore these in greater detail.

Efficient hardware for inference speeds up the process, saves energy,
extends battery life, and can operate in real-time conditions. As Al con-
tinues to be integrated into myriad applications, from smart cameras to
voice assistants, the role of optimized hardware will only become more
prominent. By leveraging these specialized hardware components, de-
velopers and engineers can bring the power of Al to devices and situa-
tions that were previously unthinkable.

8.6 Efficient Numerics

Machine learning, and especially deep learning, involves enormous
amounts of computation. Models can have millions to billions of pa-
rameters, often trained on vast datasets. Every operation, every mul-
tiplication or addition, demands computational resources. Therefore,
the precision of the numbers used in these operations can significantly
impact the computational speed, energy consumption, and memory
requirements. This is where the concept of efficient numerics comes
into play.

8.6.1 Numerical Formats

There are many different types of numerics. Numerics have a long his-
tory in computing systems.

Floating point: Known as a single-precision floating point, FP32 uti-
lizes 32 bits to represent a number, incorporating its sign, exponent,
and mantissa. Understanding how floating point numbers are repre-
sented under the hood is crucial for grasping the various optimizations
possible in numerical computations. The sign bit determines whether
the number is positive or negative, the exponent controls the range of
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values that can be represented, and the mantissa determines the pre-
cision of the number. The combination of these components allows
floating point numbers to represent a vast range of values with vary-
ing degrees of precision.

Video 13 provides a comprehensive overview of these three main
components - sign, exponent, and mantissa - and how they work to-
gether to represent floating point numbers.

! Important 13: Floating Point Numbers

https:/ /youtu.be/gcINI3ZmmCuY?si=nImcymfbESH392vu

FP32 is widely adopted in many deep learning frameworks and bal-
ances accuracy and computational requirements. It is prevalent in the
training phase for many neural networks due to its sufficient precision
in capturing minute details during weight updates. Also known as
half-precision floating point, FP16 uses 16 bits to represent a number,
including its sign, exponent, and fraction. It offers a good balance be-
tween precision and memory savings. FP16 is particularly popular in
deep learning training on GPUs that support mixed-precision arith-
metic, combining the speed benefits of FP16 with the precision of FP32
where needed.

Figure 8.7 shows three different floating-point formats: Float32,
Floatl6, and BFloat16.

bfloat16: Brain Floating Point Format Bange: ~1¢t0 ~3¢*
Expenent: @ bis. Mardssa (Sguiscand). 7L

Blcecccce e e e [WMhiauwkm

fp32: Single-precision IEEE Floating Point Format Range: =1e-2 g =3t
Exponont. 8ok Montess (Sgnhcandc Z3kes

BEEEEEFEEMMM“MMHMMM\‘MMMMMMMMMMMM

fp16: Half-precision IEEE Floating Point Format Renge: ~5.96¢ ¢ 10 65504

et 8 b § taerieass (Satney 10 bt
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Several other numerical formats fall into an exotic class. An exotic
example is BF16 or Brain Floating Point. It is a 16-bit numerical format
designed explicitly for deep learning applications. It is a compromise
between FP32 and FP16, retaining the 8-bit exponent from FP32 while
reducing the mantissa to 7 bits (as compared to FP32’s 23-bit mantissa).

Figure 8.7:
point formats.

Three floating-


https://youtu.be/gc1Nl3mmCuY?si=nImcymfbE5H392vu
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This structure prioritizes range over precision. BF16 has achieved train-
ing results comparable in accuracy to FP32 while using significantly
less memory and computational resources (Kalamkar et al. 2019). This
makes it suitable not just for inference but also for training deep neural
networks.

By retaining the 8-bit exponent of FP32, BF16 offers a similar range,
which is crucial for deep learning tasks where certain operations can
result in very large or very small numbers. At the same time, by trun-
cating precision, BF16 allows for reduced memory and computational
requirements compared to FP32. BF16 has emerged as a promising
middle ground in the landscape of numerical formats for deep learn-
ing, providing an efficient and effective alternative to the more tradi-
tional FP32 and FP16 formats.

Integer: These are integer representations using 8, 4, and 2 bits. They
are often used during the inference phase of neural networks, where
the weights and activations of the model are quantized to these lower
precisions. Integer representations are deterministic and offer signif-
icant speed and memory advantages over floating-point representa-
tions. For many inference tasks, especially on edge devices, the slight
loss in accuracy due to quantization is often acceptable, given the effi-
ciency gains. An extreme form of integer numerics is for binary neural
networks (BNNSs), where weights and activations are constrained to
one of two values: +1 or -1.

Variable bit widths: Beyond the standard widths, research is on-
going into extremely low bit-width numerics, even down to binary or
ternary representations. Extremely low bit-width operations can offer
significant speedups and further reduce power consumption. While
challenges remain in maintaining model accuracy with such drastic
quantization, advances continue to be made in this area.

Efficient numerics is not just about reducing the bit-width of num-
bers but understanding the trade-offs between accuracy and efficiency.
As machine learning models become more pervasive, especially in real-
world, resource-constrained environments, the focus on efficient nu-
merics will continue to grow. By thoughtfully selecting and leveraging
the appropriate numeric precision, one can achieve robust model per-
formance while optimizing for speed, memory, and energy. Table 8.1
summarizes these trade-offs.
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Table 8.1: Comparing precision levels in deep learning.

Precision Pros

Cons

FP32
(Float-
ing
Point
32-bit)

FP16
(Float-
ing
Point
16-bit)

INT8
(8-bit
Integer)

INT4
(4-bit
Integer)

Standard precision
used in most deep
learning frameworks.
High accuracy due to
ample
representational
capacity.
Well-suited for
training

Reduces memory
usage compared to
FP32.

Speeds up
computations on
hardware that
supports FP16.
Often used in
mixed-precision
training to balance
speed and accuracy.
Significantly reduced
memory footprint
compared to
floating-point
representations.
Faster inference if
hardware supports
INT8 computations.
Suitable for many
post-training
quantization

scenarios.
Even lower memory

usage than INTS.
Further speedup
potential for
inference.

High memory usage.
Slower inference
times compared to
quantized models.
Higher energy
consumption.

Lower
representational
capacity compared to
FP32.

Risk of numerical
instability in some
models or layers.

Quantization can lead
to some accuracy loss.
Requires careful
calibration during
quantization to
minimize accuracy
degradation.

Higher risk of
accuracy loss
compared to INTS.
Calibration during
quantization becomes
more critical.
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Precision Pros Cons
Binary ¢ Minimal memory e Significant accuracy
footprint (only 1 bit drop for many tasks.
per parameter). ¢ Complex training
¢ Extremely fast dynamics due to
inference due to extreme quantization.

bitwise operations.
e Power efficient.

Ternary ¢ Low memory usage ¢ Accuracy might still
but slightly more be lower than that of
than binary. higher precision

¢ Offers a middle models.
ground between ¢ Training dynamics
representation and can be complex.
efficiency.

8.6.2 Efficiency Benefits

Numerical efficiency matters for machine learning workloads for sev-
eral reasons:

Computational Efficiency : High-precision computations (like FP32
or FP64) can be slow and resource-intensive. Reducing numeric preci-
sion can achieve faster computation times, especially on specialized
hardware that supports lower precision.

Memory Efficiency: Storage requirements decrease with reduced
numeric precision. For instance, FP16 requires half the memory of
FP32. This is crucial when deploying models to edge devices with lim-
ited memory or working with large models.

Power Efficiency: Lower precision computations often consume less
power, which is especially important for battery-operated devices.

Noise Introduction: Interestingly, the noise introduced using lower
precision can sometimes act as a regularizer, helping to prevent over-
fitting in some models.

Hardware Acceleration: Many modern Al accelerators and GPUs
are optimized for lower precision operations, leveraging the efficiency
benefits of such numerics.

8.7 Evaluating Models

It’s worth noting that the actual benefits and trade-offs can vary based
on the specific architecture of the neural network, the dataset, the task,
and the hardware being used. Before deciding on a numeric precision,



CHAPTER 8. EFFICIENT AI 245

it'’s advisable to perform experiments to evaluate the impact on the
desired application.

8.7.1 Efficiency Metrics

A deep understanding of model evaluation methods is important to
guide this process systematically. When assessing Al models’ effective-
ness and suitability for various applications, efficiency metrics come to
the forefront.

FLOPs (Floating Point Operations), as introduced in Training,
gauge a model’s computational demands. For instance, a modern
neural network like BERT has billions of FLOPs, which might be
manageable on a powerful cloud server but would be taxing on a
smartphone. Higher FLOPs can lead to more prolonged inference
times and significant power drain, especially on devices without
specialized hardware accelerators. Hence, for real-time applications
such as video streaming or gaming, models with lower FLOPs might
be more desirable.

Memory Usage pertains to how much storage the model requires,
affecting both the deploying device’s storage and RAM. Consider de-
ploying a model onto a smartphone: a model that occupies several
gigabytes of space not only consumes precious storage but might also
be slower due to the need to load large weights into memory. This
becomes especially crucial for edge devices like security cameras or
drones, where minimal memory footprints are vital for storage and
rapid data processing.

Power Consumption becomes especially crucial for devices that rely
on batteries. For instance, a wearable health monitor using a power-
hungry model could drain its battery in hours, rendering it impractical
for continuous health monitoring. Optimizing models for low power
consumption becomes essential as we move toward an era dominated
by IoT devices, where many devices operate on battery power.

Inference Time is about how swiftly a model can produce results.
In applications like autonomous driving, where split-second decisions
are the difference between safety and calamity, models must operate
rapidly. If a self-driving car’s model takes even a few seconds too long
to recognize an obstacle, the consequences could be dire. Hence, en-
suring a model’s inference time aligns with the real-time demands of
its application is paramount.

In essence, these efficiency metrics are more than numbers dictating
where and how a model can be effectively deployed. A model might
boast high accuracy, but if its FLOPs, memory usage, power consump-
tion, or inference time make it unsuitable for its intended platform or


../training/training.html

8.7. Evaluating Models 246

real-world scenarios, its practical utility becomes limited.

8.7.2 Efficiency Comparisons

The landscape of machine learning models is vast, with each model
offering a unique set of strengths and implementation considerations.
While raw accuracy figures or training and inference speeds might
be tempting benchmarks, they provide an incomplete picture. A
deeper comparative analysis reveals several critical factors influencing
a model’s suitability for TinyML applications. Often, we encounter
the delicate balance between accuracy and efficiency. For instance,
while a dense, deep learning model and a lightweight MobileNet
variant might excel in image classification, their computational de-
mands could be at two extremes. This differentiation is especially
pronounced when comparing deployments on resource-abundant
cloud servers versus constrained TinyML devices. In many real-world
scenarios, the marginal gains in accuracy could be overshadowed by
the inefficiencies of a resource-intensive model.

Moreover, the optimal model choice is not always universal but often
depends on the specifics of an application. For instance, a model that
excels in general object detection scenarios might struggle in niche en-
vironments, such as detecting manufacturing defects on a factory floor.
This adaptability- or the lack of it- can influence a model’s real-world
utility.

Another important consideration is the relationship between model
complexity and its practical benefits. Take voice-activated assistants,
such as “Alexa” or “OK Google.” While a complex model might
demonstrate a marginally superior understanding of user speech if
it’s slower to respond than a simpler counterpart, the user experience
could be compromised. Thus, adding layers or parameters only
sometimes equates to better real-world outcomes.

Another important consideration is the relationship between model
complexity and its practical benefits. Take voice-activated assistants
like “Alexa” or “OK Google.” While a complex model might demon-
strate a marginally superior understanding of user speech if it’s slower
to respond than a simpler counterpart, the user experience could be
compromised. Thus, adding layers or parameters only sometimes
equates to better real-world outcomes.

Furthermore, while benchmark datasets, such as ImageNet (Rus-
sakovsky et al. 2015), COCO (T.-Y. Lin et al. 2014), Visual Wake Words
(L. Wang and Zhan 2019a), Google Speech Commands (Warden 2018),
etc. provide a standardized performance metric, they might not
capture the diversity and unpredictability of real-world data. Two
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facial recognition models with similar benchmark scores might exhibit
varied competencies when faced with diverse ethnic backgrounds
or challenging lighting conditions. Such disparities underscore the
importance of robustness and consistency across varied data. For
example, Figure 8.8 from the Dollar Street dataset shows stove images
across extreme monthly incomes. Stoves have different shapes and
technological levels across different regions and income levels. A
model that is not trained on diverse datasets might perform well on
a benchmark but fail in real-world applications. So, if a model was
trained on pictures of stoves found in wealthy countries only, it would
fail to recognize stoves from poorer regions.

*

Photo: Dollar Street (CC BY 4.0)

In essence, a thorough comparative analysis transcends numerical
metrics. It’s a holistic assessment intertwined with real-world applica-
tions, costs, and the intricate subtleties that each model brings to the
table. This is why having standard benchmarks and metrics widely
established and adopted by the community becomes important.

8.8 Conclusion

Efficient Al is crucial as we push towards broader and more diverse
real-world deployment of machine learning. This chapter provided
an overview, exploring the various methodologies and considerations
behind achieving efficient Al, starting with the fundamental need, sim-
ilarities, and differences across cloud, Edge, and TinyML systems.

Figure 8.8: Different types of
stoves. Source: Dollar Street
stove images.
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We examined efficient model architectures and their usefulness for
optimization. Model compression techniques such as pruning, quanti-
zation, and knowledge distillation exist to help reduce computational
demands and memory footprint without significantly impacting accu-
racy. Specialized hardware like TPUs and NN accelerators offer opti-
mized silicon for neural network operations and data flow. Efficient
numerics balance precision and efficiency, enabling models to attain
robust performance using minimal resources. We will explore these
topics in depth and detail in the subsequent chapters.

Together, these form a holistic framework for efficient AL But the
journey doesn’t end here. Achieving optimally efficient intelligence re-
quires continued research and innovation. As models become more so-
phisticated, datasets grow, and applications diversify into specialized
domains, efficiency must evolve in lockstep. Measuring real-world im-
pact requires nuanced benchmarks and standardized metrics beyond
simplistic accuracy figures.

Moreover, efficient Al expands beyond technological optimization
and encompasses costs, environmental impact, and ethical considera-
tions for the broader societal good. As Al permeates industries and
daily lives, a comprehensive outlook on efficiency underpins its sus-
tainable and responsible progress. The subsequent chapters will build
upon these foundational concepts, providing actionable insights and
hands-on best practices for developing and deploying efficient Al so-
lutions.

8.9 Resources

Here is a curated list of resources to support students and instructors
in their learning and teaching journeys. We are continuously working
on expanding this collection and will add new exercises soon.

1 Slides

These slides are a valuable tool for instructors to deliver lectures
and for students to review the material at their own pace. We
encourage students and instructors to leverage these slides to
improve their understanding and facilitate effective knowledge
transfer.

* Deploying on Edge Devices: challenges and techniques.
* Model Evaluation.

¢ Continuous Evaluation Challenges for TinyML.



https://docs.google.com/presentation/d/1tvSiOfQ1lYPXsvHcFVs8R1lYZPei_Nb7/edit?usp=drive_link&ouid=102419556060649178683&rtpof=true&sd=true
https://docs.google.com/presentation/d/1jdBnIxgNovG3b8frTl3DwqiIOw_K4jvp3kyv2GoKfYQ/edit?usp=drive_link&resourcekey=0-PN8sYpltO1nP_xePynJn9w
https://docs.google.com/presentation/d/1OuhwH5feIwPivEU6pTDyR3QMs7AFstHLiF_LB8T5qYQ/edit?usp=drive_link&resourcekey=0-DZxIuVBUbJawuFh0AO-Pvw
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! Videos

* Coming soon.

O Exercises

To reinforce the concepts covered in this chapter, we have curated
a set of exercises that challenge students to apply their knowl-
edge and deepen their understanding.

* Coming soon.
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Chapter 9

Model Optimizations

When machine learning models are deployed on systems, especially on
resource-constrained embedded systems, the optimization of models
is a necessity. While machine learning inherently often demands sub-
stantial computational resources, the systems are inherently limited in
memory, processing power, and energy. This chapter will dive into
the art and science of optimizing machine learning models to ensure
they are lightweight, efficient, and effective when deployed in TinyML
scenarios.

Figure 9.1: DALL-E 3 Prompt:
Illustration of a neural network
model represented as a busy con-
struction site, with a diverse
group of construction workers,
both male and female, of wvari-
ous ethnicities, labeled as ‘prun-
ing’, ‘quantization’, and ‘spar-
sity’. They are working together
to make the neural network more
efficient and smaller, while main-
taining high accuracy. The ‘prun-
ing” worker, a Hispanic female, is
cutting unnecessary connections
from the middle of the network.
The ‘quantization” worker, a Cau-
casian male, is adjusting or tweak-
ing the weights all over the place.
The ‘sparsity” worker, an African
female, is removing unnecessary
nodes to shrink the model. Con-
struction trucks and cranes are
in the background, assisting the
workers in their tasks. The neural
network is visually transforming
from a complex and large struc-
ture to a more streamlined and
smaller one.
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@ Learning Objectives

¢ Learn techniques like pruning, knowledge distillation and
specialized model architectures to represent models more
efficiently

* Understand quantization methods to reduce model size
and enable faster inference through reduced precision nu-
merics

* Explore hardware-aware optimization approaches to
match models to target device capabilities

¢ Develop holistic thinking to balance tradeoffs in model
complexity, accuracy, latency, power etc. based on appli-
cation requirements

¢ Discover software tools like frameworks and model conver-
sion platforms that enable deployment of optimized mod-
els

* Gain strategic insight into selecting and applying model op-
timizations based on use case constraints and hardware tar-
gets

9.1 Overview

The optimization of machine learning models for practical deployment
is a critical aspect of Al systems. This chapter focuses on exploring
model optimization techniques as they relate to the development of ML
systems, ranging from high-level model architecture considerations to
low-level hardware adaptations. Figure 9.2 Illustrates the three layers
of the optimization stack we cover.

At the highest level, we examine methodologies for reducing the
complexity of model parameters without compromising inferential ca-
pabilities. Techniques such as pruning and knowledge distillation offer
powerful approaches to compress and refine models while maintain-
ing or even improving their performance, not only in terms of model
quality but also in actual system runtime performance. These meth-
ods are crucial for creating efficient models that can be deployed in
resource-constrained environments.

Furthermore, we explore the role of numerical precision in model
computations. Understanding how different levels of numerical preci-



